A REVIEW AND ANALYSIS OF PRIMARY NITROGEN DIOXIDE EMISSIONS FROM ROAD VEHICLES IN SYDNEY

NSW ROADS AND MARITIME SERVICES

Job ID. 20187

20 April 2015
A review and analysis of primary nitrogen dioxide emissions from road vehicles in Sydney

NSW Roads and Maritime Services

Damon Roddis

This report is subject to the copyright statement located at www.pacific-environment.com © Pacific Environment Operations Pty Ltd ABN 86 127 101 642
DISCLAIMER

Pacific Environment acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Pacific Environment. Pacific Environment is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Pacific Environment does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Pacific Environment for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Pacific Environment.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Pacific Environment is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.
EXECUTIVE SUMMARY

The presence of nitric oxide (NO) and nitrogen dioxide (NO₂) - collectively known as oxides of nitrogen (NOx)⁶ - in the atmosphere is a cause for concern due to their impacts on human health and the environment, with NO₂ being the more important pollutant from a health perspective. Road transport is a major source of NOₓ. Most of the NOₓ in vehicle exhaust is NO, with NO₂ mainly being formed in the atmosphere. NO₂ is therefore generally considered to be a ‘secondary’ pollutant. Any NO₂ that is emitted directly in vehicle exhaust is usually referred to as ‘primary NO₂’, and the fraction of NOₓ that is emitted as NO₂ is termed f-NO₂.

A number of major infrastructure projects are currently planned for Sydney, and these will require accurate and robust ambient air quality assessments, including a more informed characterisation of primary NO₂ compared with previous assessments. Road tunnels feature in some of these projects, and in-tunnel concentrations of NO₂ are an important consideration from a ventilation design perspective. Again, the use of correct assumptions for primary NO₂ is vital to this process. Historically, a fairly low value for f-NO₂ (5-10%) has been used in air quality and in-tunnel assessments. However, recent analyses of ambient NO₂ concentrations in urban areas - notably in the UK - have shown an increasing NO₂ proportion, and this has important implications for assessments. However, primary NO₂ emissions from vehicles on the road in Sydney are not well documented, either in terms of historical trends or future projections.

This Report summarises the issues associated with primary NO₂, and presents evidence based on the analysis of models and air quality monitoring data from Sydney. Several different data sets and analytical techniques are presented in the Report, including emission modelling, the analysis of ambient air quality measurements and the analysis of emissions from the ventilation stacks of operational road tunnels.

Although a range of different data sets and methods have been used in the study to determine f-NO₂, the level of agreement is good. The evidence suggests that there has been a gradual increase in f-NO₂ in recent years, from less than 10% before 2008 to around 15% in 2014. The increase has not been as pronounced as that observed in the UK, and it appears that although the value of f-NO₂ may increase further in the future, it will probably not increase much further and will eventually start to decrease.

The main reason for the increase in f-NO₂ recent years is likely to be the increased market penetration of diesel cars into the Sydney vehicle fleet. There is insufficient information on the types and distributions of exhaust after-treatment devices in use on vehicles in Sydney, and so it is not possible to determine the extent to which this is a contributing factor. Further information of this type would be beneficial to those studying the impacts of road transport on air quality in Sydney.

The findings of this work, whilst they should be viewed as indicative at this stage, could be used to support and refine calculations of primary NO₂ emissions from road traffic in Sydney, including calculations to support air quality impact assessments and studies of in-tunnel air quality. In particular, it appears from the measurements in Sydney that the approach of incorporating the European values for f-NO₂ in the NSW EPA inventory model has produced satisfactory results.

⁶ NOx is, by convention, the sum of NO₂ and NO.
CONTENTS

1 INTRODUCTION
1.1 Background
1.2 Objectives and scope of work
2 LITERATURE REVIEW
 2.1 NO and NO\textsubscript{2} formation during combustion
 2.2 Atmospheric transformation
 2.3 Quantifying NO\textsubscript{2} emissions and f-NO\textsubscript{2}
 2.3.1 Laboratory measurements
 2.3.2 Real-world remote sensing measurements
 2.3.3 Analysis of ambient monitoring data
 2.3.4 Tunnel measurements
3 SYDNEY VEHICLE FLEETS AND EMISSIONS
 3.1 Sydney vehicle fleets
 3.1.1 Overview
 3.1.2 Vehicle group and fuel type
 3.1.3 Age distribution and emission standards
 3.2 NO\textsubscript{X} emissions from road transport in Sydney
4 EVIDENCE RELATING TO PRIMARY NO\textsubscript{2} EMISSIONS IN SYDNEY
 4.1 The EPA inventory model
 4.1.1 Method
 4.1.2 Results
 4.2 Analysis of ambient air quality data
 4.2.1 Upwind/downwind method
 4.2.2 Openair ‘calcFno2’ function
 4.2.3 Openair ‘linearRelation’ function
 4.3 Analysis of data from Sydney tunnels
 4.3.1 Lane Cove Tunnel
 4.3.2 M5 East Tunnel
5 SUMMARY AND CONCLUSIONS
6 REFERENCES
APPENDIX A: NSW EPA ANALYSIS OF VEHICLE REGISTRATION DATA
TERMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ADR</td>
<td>Australian Design Rule</td>
</tr>
<tr>
<td>BTS</td>
<td>(NSW) Bureau of Transport Statistics</td>
</tr>
<tr>
<td>DPF</td>
<td>diesel particulate filter</td>
</tr>
<tr>
<td>Emission factor</td>
<td>A quantity which expresses the mass of a pollutant emitted per unit of activity. For road transport the unit of activity is usually either distance (i.e. g/km) or fuel consumed (i.e. g/litre).</td>
</tr>
<tr>
<td>Emission rate</td>
<td>A quantity which expresses the mass of a pollutant emitted per unit of time (e.g. g/second)</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GMR</td>
<td>(NSW) Greater Metropolitan Region</td>
</tr>
<tr>
<td>HDV</td>
<td>heavy-duty vehicle, which includes heavy goods vehicles, buses and coaches</td>
</tr>
<tr>
<td>HGV</td>
<td>heavy good vehicle</td>
</tr>
<tr>
<td>LCV</td>
<td>light commercial vehicle</td>
</tr>
<tr>
<td>LDV</td>
<td>light-duty vehicle, which includes cars and light commercial vehicles</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>NPI</td>
<td>National Pollutant Inventory</td>
</tr>
<tr>
<td>NSW EPA</td>
<td>New South Wales Environment Protection Authority</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OEH</td>
<td>(NSW) Office of Environment and Heritage</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RMS</td>
<td>(NSW) Roads and Maritime Services</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>VKT</td>
<td>vehicle-kilometres travelled</td>
</tr>
<tr>
<td>μg/m³</td>
<td>micrograms per cubic metre</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Background

The presence of nitric oxide (NO) and nitrogen dioxide (NO₂) - collectively known as oxides of nitrogen (NOx)² - in the atmosphere is a cause for concern due to their impacts on human health and the environment, with NO₂ being the more important pollutant from a health perspective. Road transport is a major source of NOx. Most of the NOx in vehicle exhaust is NO, with NO₂ mainly being formed in the atmosphere. NO₂ is therefore generally considered to be a ‘secondary’ pollutant. Any NO₂ that is emitted directly in vehicle exhaust is usually referred to as ‘primary NO₂’, and the fraction of NOx that is emitted as NO₂ is termed f-NO₂ (often stated as a percentage).

A number of major infrastructure projects are currently planned for Sydney, and these will require accurate and robust ambient air quality assessments, including a more informed characterisation of primary NO₂ compared with previous assessments. Road tunnels feature in some of these projects, and in-tunnel concentrations of NO₂ are an important consideration from a ventilation design perspective. Again, the use of correct assumptions for primary NO₂ is vital to this processes.

Historically, a fairly low value for f-NO₂ (5-10%) has been used in air quality and in-tunnel assessments. However, recent analyses of ambient NO₂ concentrations in urban areas - notably in the UK - have shown an increasing NO₂ proportion, and this has important implications for assessments. However, primary NO₂ emissions from vehicles in Sydney are not well documented, either in terms of historical trends or future projections. Few studies have focussed specifically on this topic, although data from models, ambient air quality measurements and tunnels been available for some time to allow primary NO₂ to be estimated.

NSW Roads and Maritime Services (RMS) has therefore commissioned Pacific Environment to review the available literature and data with a view to improving the understanding of primary NO₂ emissions in Sydney, how these have changed in the past, and how they are likely to change in the future. This Report describes the issue of primary NO₂ and presents evidence which should enable its more accurate representation in future studies.

1.2 Objectives and scope of work

The study is composed of the following elements:

- Literature review (Section 2). This part of the study involves a brief review of the scientific and technical literature on primary NO₂ emissions. The issue of primary NO₂ is explained, with a summary of recent studies dealing with the quantification of primary NO₂.

- Characterisation and emission behaviour of vehicles in Sydney (Section 3). The characteristics and emission behaviour of the vehicle fleet in Sydney have been summarised. This summary provides some context in terms of the importance of road vehicles as a source of NOx.

- Presentation of the evidence relating to primary NO₂ emissions from road vehicles in Sydney (Section 4). This includes the following:

\(^2\) NOx is, by convention, the sum of NO₂ and NO.
- Emissions modelling. Emissions of NO\textsubscript{x} and NO\textsubscript{2} (and hence f-NO\textsubscript{2}) for different vehicle groups and road types in Sydney have been estimated using the model developed for the NSW GMR inventory3.

- An analysis of ambient air quality data. The historical trends in NO\textsubscript{x} and NO\textsubscript{2} concentrations at roadside ambient air quality monitoring stations in Sydney have been investigated using different approaches, including some initial investigations using the Openair software (Carslaw, 2015a). As far as we are aware, Openair has not previously been used to estimate primary NO\textsubscript{2} from monitoring data in Australia.

- An analysis of the air pollution monitoring data from operational road tunnels. The analysis has focused on the Lane Cove Tunnel and the M5 East Tunnel.

3 An emissions inventory defines the amount (in tonnes per year) of each pollutant that is emitted from each source in a given area.
2 LITERATURE REVIEW

2.1 NO and NO\textsubscript{2} formation during combustion

The road transport sector, which relies significantly upon internal combustion engines, is a major contributor to global NO\textsubscript{x} emissions (Boulter et al., 2013). In an internal combustion engine energy is produced from the burning of fuel in air, with the main oxidation products being carbon dioxide (CO\textsubscript{2}) and water vapour. However, some of the nitrogen in the combustion air is also oxidised, leading to the formation of NO. NO formation is enhanced by the high temperatures and pressures found in the combustion chamber and oxygen-rich fuelling conditions.

The main NO formation mechanism is known as the ‘thermal’ (or Zel’dovich) cycle (Heywood, 2008), and this is responsible for more than 90\% of emissions (Vestreng et al., 2009). The mechanism is described by the following reactions:

\[
\begin{align*}
N_2 + O & \rightarrow NO + N \quad \text{Reaction 1} \\
N + O_2 & \rightarrow NO + O \quad \text{Reaction 2} \\
N + OH & \rightarrow NO + H \quad \text{Reaction 3}
\end{align*}
\]

The first reaction is the rate-determining step, influencing the amount of NO which is formed, and is highly dependent on combustion temperature; increasing the temperature from 1,200°C to 2,000°C increases the rate of this reaction by a factor of 10,000 (Baulch et al., 2004).

Whilst NO is the dominant NO\textsubscript{x} component formed during engine combustion, significant amounts of NO\textsubscript{2} can also be produced under certain conditions.

2.2 Atmospheric transformation

An understanding of the transformation of NO and NO\textsubscript{2} in the atmosphere is vital when it comes to interpreting ambient air quality measurements. However, the ambient concentration of NO\textsubscript{2} is dictated by various complex processes and factors.

Under the majority of atmospheric conditions, the main mechanism for NO\textsubscript{2} formation in the atmosphere is through the rapid reaction of NO with ozone:

\[
NO + O_3 \rightarrow NO_2 + O_2 \quad \text{Reaction 4}
\]

If this were the only important reaction (as it is at night-time under most urban conditions) then NO will be transformed into NO\textsubscript{2} until either all the NO has been converted to NO\textsubscript{2} or until all the ozone has been used up (known as ‘ozone titration’). At polluted locations comparatively close to sources of NO\textsubscript{x} (such as roads) NO is in large excess and it is the availability of O\textsubscript{3} which limits the quantity of NO\textsubscript{2} that can be produced (AQEG, 2004). The rate of this reaction is important for modelling, since the time it takes for exhaust emissions of NO and NO\textsubscript{2} to reach roadside location is only a few seconds, whilst the time it takes for emissions to reach an urban background location can be tens of minutes. As a result, the NO\textsubscript{2}/NO\textsubscript{x} ratio near to traffic sources is generally lower than at urban background locations (Denby, 2011).

Other chemical processes can convert NO to NO\textsubscript{2}, and these are discussed in detail in the literature (e.g. AQEG, 2004).
Under normal ambient daytime conditions the reverse process also occurs – the destruction of NO₂ by photolysis to form NO and ozone, as shown in Reaction 5 and Reaction 6:

\[
\text{NO}_2 + \text{sunlight} \rightarrow \text{NO} + \text{O}
\]

Reaction 5

\[
0 + \text{O}_2 (+\text{M}) \rightarrow \text{O}_3 (+\text{M})
\]

Reaction 6

where M is a third body, most commonly nitrogen.

Ozone is formed when there are sufficient amounts of NOₓ and VOCs, adequate sunlight, and high enough temperatures. Concentrations therefore tend to peak during the summer months and when dispersion is constrained by meteorological conditions and local topography.

2.3 Quantifying NO₂ emissions and f-NO₂

2.3.1 Laboratory measurements

Laboratory measurements have shown that the proportion of NOₓ in vehicle exhaust which is emitted as primary NO₂ varies according to factors such as vehicle group, operating condition and, indeed, the measurement method (Latham et al., 2001). An extensive review of recent NO₂ measurements in Europe was conducted by Pastramas et al. (2014). The findings are not repeated here, but several of the studies mentioned that the types and combinations of after-treatment technology installed had a strong influence on NO₂ emissions. It was noted that, in general, the increased market penetration of diesel vehicles and the emissions of NO₂ from technologies such as catalytically regenerative traps have led to a rise in the NO₂/NOₓ ratio in vehicle exhaust.

2.3.2 Real-world remote sensing measurements

Vehicle emission factors can also be determined by remote sensing, whereby individual vehicle plumes are measured in situ using an UV/infrared beam. Although large numbers of vehicles can be sampled in this way, remote sensing has some limitations. For example, a bias is introduced to the dataset because sampling must be undertaken when vehicles are under load. In measurement campaigns in the UK, Carslaw and Rhys-Tyler (2013) produced NO₂ emission factors for a number of vehicle categories. In the United States, Bishop and Stedman (2008) observed an increase in f-NO₂ due to diesel particulate filters (DPFs).

2.3.3 Analysis of ambient monitoring data

In the late 2000s, several studies in the UK and Europe analysed the measurements from ambient air quality monitoring stations to determine long-term trends in NOₓ and NO₂ at urban background and roadside sites. It is difficult to derive f-NO₂ accurately from ambient monitoring data because concentrations are determined by the overall equilibrium between ozone, NO and NO₂, of which the f-NO₂ ratio is only one of the drivers. In the UK the Netcen model is the main one used to estimate f-NO₂. The model is a one-dimensional representation of the interaction between f-NO₂ and NOₓ, NO₂ and O₃ concentrations at roadside locations (Grice et al., 2009). It is underpinned by the basic assumption that an appropriate background site can be paired with a roadside monitoring site, such that the NOₓ, NO₂ and O₃ measured at the background site are representative of the background concentrations at the roadside site.

Analyses have shown a downward trend in NOₓ concentrations across urban areas, which is consistent with emissions from road traffic (Carslaw et al., 2011a; Grice et al., 2009). However, this trend has not been observed for NO₂ concentrations at roadside locations (Carslaw et al., 2011b; Keuken et al., 2012; Kurtenbach et al., 2012; Tian et al., 2011; Minoura and Ito, 2010). Analyses of ambient NO₂ concentrations in urban areas in the UK have indicated that a significant proportion of NO₂ must be emitted directly from the exhaust, and it has been found that the NO₂/NOₓ proportion has increased as...
a result of the introduction of DPFs on buses (notably in London), the increased penetration of diesel vehicles in the passenger car fleet, the increased use of oxidation catalysts on diesel vehicles, and new light-duty and heavy-duty engine technologies (Carslaw and Beevers, 2004; Carslaw, 2005).

In Rotterdam, Keuken et al. (2009) found that f-NO₂ for road traffic increased from 9% in 1986 to 13% in 2005. This change was smaller than that observed in London (Carslaw, 2005). It was suggested that this may have been related to the larger fraction of diesel vehicles in the UK fleet.

An analysis of air quality monitoring data from two sites near heavily trafficked roads in Helsinki by Antilla et al. (2011) showed that primary NO₂ emissions increased from below 10% in the 1990s to about 20% in 2009, with a more distinctive increase during the most recent years. Again, this change was considered to be due to the increase in the proportion of diesel cars in Finland.

Grice et al. (2009) assessed trends in f-NO₂ emissions in urban areas of ten European Union countries. The country-level values for f-NO₂ were derived using national emissions inventory data for NOₓ, information on vehicle fleets, and estimates of f-NO₂ for different types of vehicle. The results - summarised in Table 2.1 - show that f-NO₂ has increased since 1995 in each country, and that the rate of increase has been greatest since 2000. This trend is expected to continue to 2020 as a result of the further penetration of exhaust after-treatment technologies for diesel vehicles in the fleets.

Table 2.1: Average f-NO₂ in urban areas of European countries between 1995 and 2020 (Grice et al., 2009)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>6.5</td>
<td>7.3</td>
<td>11.1</td>
<td>20</td>
<td>29.1</td>
<td>31.8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>6.1</td>
<td>6.3</td>
<td>9.8</td>
<td>15.1</td>
<td>20.3</td>
<td>19.6</td>
</tr>
<tr>
<td>Finland</td>
<td>4.8</td>
<td>5.9</td>
<td>7.1</td>
<td>10.2</td>
<td>18.5</td>
<td>23.2</td>
</tr>
<tr>
<td>France</td>
<td>5.8</td>
<td>6.9</td>
<td>13.9</td>
<td>25.9</td>
<td>36.1</td>
<td>40.7</td>
</tr>
<tr>
<td>Germany</td>
<td>5.5</td>
<td>6.0</td>
<td>10.1</td>
<td>19.3</td>
<td>27.8</td>
<td>31.1</td>
</tr>
<tr>
<td>Greece</td>
<td>6.9</td>
<td>6.9</td>
<td>7.3</td>
<td>6.9</td>
<td>7.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Italy</td>
<td>5.9</td>
<td>6.4</td>
<td>8.8</td>
<td>14.5</td>
<td>21.1</td>
<td>24.9</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5.1</td>
<td>5.6</td>
<td>8.6</td>
<td>17.3</td>
<td>27.0</td>
<td>27.3</td>
</tr>
<tr>
<td>Spain</td>
<td>5.8</td>
<td>6.5</td>
<td>10.5</td>
<td>18.7</td>
<td>27.5</td>
<td>32.9</td>
</tr>
<tr>
<td>UK</td>
<td>5.4</td>
<td>5.9</td>
<td>10.2</td>
<td>21.0</td>
<td>31.8</td>
<td>35.6</td>
</tr>
</tbody>
</table>

Similar effects have been observed in the United States. For example, a number of studies conducted in Oakland, California and have linked an increase in f-NO₂ to a sharp rise in the use of DPFs; the use of DPFs on trucks in California increased from 2% to 99% between 2009 and 2013. Dallman et al. (2012) measured NOₓ emissions from heavy-duty diesel trucks in a road tunnel in Oakland. Pollutant concentrations in the exhaust plumes of individual trucks were measured with a high time resolution, with emission factors being calculated using a carbon balance method. Fleet-average emission factors for NOₓ decreased by 30-37% between 2006 and 2010, whereas a 34% increase in the NO₂ emission factor was observed. The emission factors for NOₓ were found to be negatively correlated with those for all other pollutants, probably due to the use of DPFs. Harley (2014) assessed emissions from trucks with DPF retrofits at the Port of Oakland, and found that fleet-average NOₓ emission factors had decreased by 53% between 2009 and 2013. However, direct emissions of NO₂ increased, and consequently f-NO₂ increased from 3% to 18%. The study found that DPF-equipped trucks had substantially higher NO₂ emission factors than trucks without DPFs. The newest trucks equipped with both DPFs and selective catalytic reduction (SCR) systems for NOₓ control had an average NO₂ emission factor that was equal to that of the truck fleet in 2009. A summary of the observed emission factors from the study is provided in Table 2.2.
Table 2.2: Observed emission factors for NO\(_X\), NO\(_2\) and primary NO\(_2\) for HDVs in the Port of Oakland

<table>
<thead>
<tr>
<th>Fleet</th>
<th>NO(_X) (g/kg)</th>
<th>NO(_2) (g/kg)</th>
<th>f-NO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 (2% DPF, 0% SCR)</td>
<td>33</td>
<td>1.0</td>
<td>3%</td>
</tr>
<tr>
<td>2011 (54% DPF, 2% SCR)</td>
<td>18</td>
<td>2.1</td>
<td>12%</td>
</tr>
<tr>
<td>2013 (99% DPF, 9% SCR)</td>
<td>15</td>
<td>2.8</td>
<td>18%</td>
</tr>
</tbody>
</table>

In Hong Kong, Tian et al. (2011) used roadside concentrations of NO\(_X\) and NO\(_2\), and background ozone (O\(_3\)) to estimate the mean f-NO\(_2\) value in vehicle exhaust between 1998 and 2008 in combination with the method described in Carslaw and Beevers (2005) (See Section 4.2.2). A summary of the f-NO\(_2\) values obtained for three roadside monitoring stations (CB, CL, MK) is shown in Figure 2.1. At all three roadside stations there was a sustained upward trend in f-NO\(_2\) from 2003. The grey shading shows the 95% confidence intervals on the trend line. The orange and yellow shaded areas represent periods with diesel retrofit programmes for the light-duty vehicles and heavy-duty vehicles respectively.

![Figure 2.1: Monthly trends in the modelled f-NO\(_2\) for three roadside monitoring stations in Hong Kong (1998-2008) (Tian et al., 2011)](image)

In Japan, Minoura and Ito (2010) developed a model for assessing f-NO\(_2\) at roadside locations in Tokyo for the 2008 fleet. The model used real-time air quality monitoring data for NO, NO\(_X\) and O\(_3\). At a key intersection, a f-NO\(_2\) value of 7% was estimated.

2.3.4 Tunnel measurements

Due to the limited dispersion and dilution conditions in a tunnel environment, pollutant concentrations tend to be higher than in ambient air. As a result tunnel samples are used to derive tunnel emission...
factors. Inside a road tunnel there is usually a high concentration of NOx from vehicle exhaust, and any available oxidant - principally ozone - should be removed relatively quickly. Once the ozone is removed, NO2 formation via Reaction 4 will stop. Inside a tunnel most of the NO2 in the air is therefore primary in origin; it is emitted directly from vehicle exhaust pipes rather than being formed in the tunnel atmosphere. Whilst it is possible that certain reactions could lead to the formation of NO2 in longer tunnels, the NO2/NOx proportion in the air from tunnel ventilation outlets ought to provide a reliable indication of the overall average NO2/NOx proportion in vehicle exhaust. Boulter et al. (2007) used this approach to determine f-NO2 values for light-duty and heavy-duty vehicles in the Hatfield and Bell Common tunnels in the UK.
3 SYDNEY VEHICLE FLEETS AND EMISSIONS

3.1 Sydney vehicle fleets

3.1.1 Overview

When estimating emissions from road transport it is important to distinguish between different types of vehicle, between vehicles using different types of fuel, and between vehicles conforming to different emission regulations. These distinctions are relevant to all pollutants, including NO\textsubscript{X} and primary NO\textsubscript{2}, and they are explored in this Section of the Report. The information on the composition of vehicle fleets in Sydney has been taken from the NSW GMR emissions inventory (NSW EPA (2012b) and references therein). It should be noted that the fleet projections for future years were based on the knowledge at the time the inventory was compiled, and more recent work by NSW EPA has indicated some discrepancies between the projections and RMS statistical data. These discrepancies have been noted in this Report.

3.1.2 Vehicle group and fuel type

Nine vehicle groups have been defined in the inventory to reflect differences in emissions behaviour. These groups are summarised in Table 3.1.

<table>
<thead>
<tr>
<th>Vehicle group</th>
<th>Vehicles included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol car(a)</td>
<td>Petrol car, 4WD(e), SUV(f) and people-mover</td>
</tr>
<tr>
<td></td>
<td>LPG(g) car, 4WD</td>
</tr>
<tr>
<td>Diesel car(b)</td>
<td>Petrol car, 4WD, SUV and people-mover</td>
</tr>
<tr>
<td>Petrol LCV(c)</td>
<td>Petrol commercial vehicle < 3.5 tonnes GVM(e)</td>
</tr>
<tr>
<td>Diesel LCV</td>
<td>Diesel commercial vehicle < 3.5 tonnes GVM</td>
</tr>
<tr>
<td>Petrol HDV(d)</td>
<td>Petrol commercial vehicle < 3.5 tonnes GVM</td>
</tr>
<tr>
<td>Diesel Rigid HGV(e)</td>
<td>Diesel commercial vehicle 3.5 t < GVM < 25 t</td>
</tr>
<tr>
<td>Diesel Articulated HGV</td>
<td>Diesel commercial vehicle > 25 tonnes GVM</td>
</tr>
<tr>
<td>Diesel bus</td>
<td>Diesel bus > 3.5 tonnes GVM</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>Any powered two-wheel vehicle</td>
</tr>
</tbody>
</table>

(a) Referred to as ‘passenger vehicle’ in the inventory
(b) LCV = light commercial vehicle
(c) HDV = heavy-duty vehicle
(d) HGV = heavy goods vehicle
(e) 4WD = four-wheel drive
(f) SUV = sports-utility vehicle
(g) LPG = liquefied petroleum gas
(h) GVM = gross vehicle mass

The typical (‘default’) composition of the traffic in terms of these vehicle groups varies according to the type of road, and some examples from the inventory are presented in Figure 3.1. The Figure shows the VKT-weighted composition of the traffic on residential roads and highways between 2003 and 2041. There is a larger proportion of HGVs on highways than on residential roads.

In recent years the refinement of light-duty diesel engines and their superior fuel economy relative to petrol engines has led to increased sales and a larger market share. Figure 3.1 also shows that, as a consequence, there are projected increases in the proportions of diesel cars and diesel LCVs in the future. The petrol/diesel splits for cars and LCVs in the inventory are determined based on sales (registration) statistics, ‘attrition’ functions, and VKT. The assumptions underlying the fuel splits are summarised below.
The sales data for light-duty passenger vehicles (cars, people-movers and 4WD/SUV) are shown in Figure 3.2. The fuel splits up to 2008 were based on an analysis of RMS registration data for the GMR. Historically, diesel vehicles have formed only a small proportion of the car fleet and VKT. However, there was a strong growth in diesel passenger vehicle sales between 2004 and 2008, increasing from 0.2% to 6.3%, while diesel 4WD/SUV sales increased from 9% to 25%. Beyond 2008, the growth was projected to continue strongly, with the diesel proportion of passenger vehicles stabilising at 25% in 2026, and the diesel proportion of 4WD/SUV stabilising at 42% in 2020. The proportion of 4WD/SUV in the total passenger vehicle fleet increased from 17% in 2001 to 24% in 2008. Further growth was projected, with stabilisation at 34% in 2026.

The equivalent data for LCVs are shown in Figure 3.3. Diesel LCVs have historically made up 15-30% of total LCV sales, but as with cars the sales have risen rapidly in recent years (NSW EPA, 2012b). The data show that the proportion of diesel vehicles increased from 16% in 2000 to 45% in 2008, and was projected to continue to grow further, stabilising at 70% in 2026.

For each vehicle group an attrition function was derived from historical RTA registration records. The attrition function gives proportion of vehicles surviving per year as a function of age. A fixed VKT as a function of vehicle age was also applied to each vehicle group, with newer vehicles accumulating greater VKT per year than older vehicles (NSW EPA, 2012b).
For each vehicle group the growth in the total fleet size was estimated based on population projections for passenger vehicles, and economic activity (state gross product) for commercial vehicles.

VKT data were generated by the NSW Department of Transport’s Bureau of Transport Statistics (BTS) using two demand models:

- Strategic Travel Model (STM), which estimates passenger vehicle activity.
- Freight Movement Model, which estimates commercial vehicle activity.

The resulting overall VKT-weighted petrol/diesel splits used for cars and LCVs in the inventory are given in Figure 3.4.

Figure 3.2: Passenger vehicle fleet sales proportions projections (NSW EPA, 2012b)

Figure 3.3: Light commercial vehicle fleet sales proportions projections (NSW EPA, 2012b)
A more recent examination of vehicle registration data has been conducted by NSW EPA, and the initial findings are summarised in Appendix A. The EPA analysis has highlighted some discrepancies between the actual vehicle sales figures and the inventory projections. The actual growth in diesel car sales has been lower than projected in the inventory. For example, the actual NSW-wide proportion of sales in 2014 was 8%, compared with a projection for 2014 of 19%. On the other hand, the actual diesel proportion of LCVs in 2014 (89%) was substantially higher than the projection (61%). It was beyond the scope of this Pacific Environment study to include these discrepancies. NSW EPA is currently updating the emissions inventory, and the fleet information will be revised as part of this process. The emission modelling work presented here should also be updated once the new inventory has been finalised.

3.1.3 Age distribution and emission standards

The age distribution of fleet within a vehicle group is a major determinant of the emissions from that group in a given year. This is because new vehicles are required to comply with more stringent emission regulations than older vehicles. The allocation of vehicle model years to specific emission standards allows this to be taken into account, and some specific examples for three different calendar years are shown in Figure 3.5.

Australia has had road vehicle emission standards for new vehicles in place since the early 1970s, and these have been progressively tightened. Australia’s vehicle emission standards are set nationally in the Australian Design Rules (ADRs). The current standards reflect Australia’s commitment to harmonise the ADRs with the international standards.

For light-duty vehicles the Euro 5 emission standards commenced in Australia for new vehicle models from 1 November 2013. The Euro 6 standards will commence for new models from 1 July 2017 (Australian Government, 2010). With full implementation of Euro 6 the World Harmonized Light-duty Vehicle Test Cycle (WLTC) will replace the current test cycle, and a variety of test parameters will be adjusted to close loopholes and address shortcomings of the existing procedure (Mock et al., 2014).
For heavy-duty vehicles, whilst the Euro VI standards reduce the limit on NOx emissions by 77% relative to Euro V, and by 89% relative to Euro IV, advanced test protocols that improve real-world conformity to NOx limits result in reductions that are closer to 95% (Muncrief, 2015). The NOx reductions will be achieved with combustion improvements (high-pressure fuel injection and advanced air/fuel management), exhaust gas recirculation, and a closed-loop SCR system. However, at present there is some uncertainty concerning the adoption of Euro VI in Australia.

It is worth adding that several shortcomings of the regulations have been identified in the EU. For heavy-duty vehicles the Euro V standards have not achieved the anticipated reductions in NOx emissions (Ligterink et al., 2009). Whilst the Euro 5 standards have resulted in dramatic reductions in PM emissions from light-duty diesels, real-world NOx emissions from Euro V trucks and buses have continued to far exceed certification limits (Carslaw et al., 2011a). Therefore, given the availability of ultra-low sulphur fuel, it is argued that greater air quality benefits can be gained by from a leap from Euro IV to Euro VI standards, particularly for countries that are at prior standards for heavy-duty vehicles (Chambliss and Bandivandekar, 2015).
3.2 NO\textsubscript{X} emissions from road transport in Sydney

The importance of road transport as a source of NO\textsubscript{X} in Sydney can be illustrated by reference to sectoral emissions. The most detailed and comprehensive source of information on emissions in the Sydney area is the EPA’s emissions inventory (NSW EPA, 2012a). The base year of the latest inventory is 2008. Projections are currently available for 2011, 2016, 2021, 2026, 2031, 2036 and 2041, and the calculations also go back to 2003. The data for anthropogenic and biogenic emissions in Sydney, and also for road transport in Sydney, have been extracted from the inventory by EPA4 and are presented here.

Figure 3.6 shows that in Sydney during 2011 road transport was the single largest sectoral contributor to emissions of NO\textsubscript{X} (57%). The breakdown of NO\textsubscript{X} emissions in 2011 from the road transport sector by process and vehicle group is presented in Figure 3.7. Petrol passenger vehicles (mainly cars) account for a large proportion of the VKT in Sydney, and they were responsible for 45% of NO\textsubscript{X} from road transport in Sydney in 2011. Heavy-duty diesel vehicles are disproportionate contributors to NO\textsubscript{X} emissions due to their inherent combustion characteristics, high operating mass (and hence high fuel usage) and level of emission control technology (NSW EPA, 2012b).

The projections of road transport NO\textsubscript{X} and NO\textsubscript{2} emissions are broken down by vehicle group in Figure 3.8. This Figure assumes no adoption of Euro VI in Australia, but even so there are projected to be substantial reductions in emissions NO\textsubscript{X} between 2011 and 2036 due to the effects of emission-control technology.

4 The data were provided for the project Economic Analysis to Inform the National Plan for Clean Air (Particles), undertaken by Pacific Environment on behalf of the NEPC Service Corporation.

5 Vehicle types having a very small contribution – heavy-duty petrol vehicles and motorcycles - have been excluded to simplify the presentation.
Figure 3.8: Projections of road transport NOx and NO2 emissions – Sydney, 2011-2036
4 EVIDENCE RELATING TO PRIMARY NO₂ EMISSIONS IN SYDNEY

4.1 The EPA inventory model

4.1.1 Method

The method for calculating hot running emissions for the inventory involved the use of matrices of base ‘composite’ emission factors for the following cases:

- The nine vehicle groups identified earlier, with the composite emission factor for each vehicle group taking into account VKT by age and the emission factors for specific emission standards.

- Five road types (residential, arterial, commercial arterial, commercial highway, highway/freeway), as defined in the NSW GMR emissions inventory. Further information on the mapping of these categories to the RTA road network road types and the RTA’s EMME2 model is provided in the inventory report (NSW EPA, 2012b). Some types of road – notably arterial roads – are associated with higher emissions for a given average speed than others.

Each base composite emission factor is defined for a VKT-weighted average speed (the base speed) associated with the corresponding road type. Dimensionless correction factors – in the form of 6th-order polynomial functions - are then applied to the base emission factors, taking into account the actual speed on a road. According to EPA, the speed correction factors are valid up to 110 km/h for light-duty vehicles, and up to 100 km/h for heavy-duty vehicles.

Emission factors have also been provided by EPA for heavy-duty vehicles both with and without the implementation of the ADR80/04 regulation (Euro VI).

The emission factor for a given average speed is calculated as follows:

\[EF_{HotSpd} = EF_{HotBasSpd} \times \frac{SCF_{Spd}}{SCF_{BasSpd}} \]

Equation 1

Where:

- \(EF_{HotSpd} \) is the composite emission factor (in g/km) for the defined speed
- \(EF_{HotBasSpd} \) is the composite emission factor (in g/km) for the base speed
- \(SCF_{Spd} \) is the speed-correction factor for the defined speed
- \(SCF_{BasSpd} \) is the speed-correction factor for the base speed

Each speed-correction factor is a 6th order polynomial: \(SCF = aV^6 + bV^5 + \ldots + fV + g \), where \(a \) to \(g \) are constants and \(V \) is the speed in km/h.

6 ‘Average speed’ should not be confused with ‘constant speed’. The former is calculated for a driving cycle which includes periods of acceleration, deceleration, cruise and idle, as encountered in real-world traffic.
No emission factors for NO$_2$ were available for Australian vehicles. Primary NO$_2$ emissions were therefore built into the inventory model using the f-NO$_2$ values for the various vehicle categories and emission standards that have recently been developed for the EMEP/EEA Air Pollutant Emission Inventory Guidebook and COPERT 4 model (Pastramas et al., 2014). These values, which were based on a review of the literature, are shown in Table 4.1. The f-NO$_2$ values are independent of road type and vehicle speed.

Table 4.1: Values of f-NO$_2$ from Pastramas et al. (2014)

<table>
<thead>
<tr>
<th>Light-duty vehicles</th>
<th>Heavy-duty vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission standard/</td>
<td>f-NO$_2$ Petrol</td>
</tr>
<tr>
<td>technology</td>
<td>cars and LCVs</td>
</tr>
<tr>
<td>Pre-Euro</td>
<td>0.07</td>
</tr>
<tr>
<td>Euro 1</td>
<td>0.06</td>
</tr>
<tr>
<td>Euro 2</td>
<td>0.05</td>
</tr>
<tr>
<td>Euro 3</td>
<td>0.04</td>
</tr>
<tr>
<td>Euro 3 + DPF</td>
<td>-</td>
</tr>
<tr>
<td>Euro 4</td>
<td>0.05</td>
</tr>
<tr>
<td>Euro 4 + DPF</td>
<td>-</td>
</tr>
<tr>
<td>Euro 5</td>
<td>0.03</td>
</tr>
<tr>
<td>Euro 6</td>
<td>0.03</td>
</tr>
</tbody>
</table>

For petrol cars and LDVs, f-NO$_2$ is quite low and does not vary greatly by emission standard. The efficiency of the three-way catalyst has led to a reduction in NOx emissions over the consecutive Euro level vehicles, and at the same time has kept f-NO$_2$ levels low (Pastramas et al., 2014). For diesel cars and LDVs the range of values is larger, and varies with emission standard and configuration of the emission-control technology. For diesel HGVs and buses the values are generally between those of petrol and diesel LDVs, but are relatively high for vehicles equipped with continuously regenerating traps (CRTs).

Pastramas et al. (2014) note that, due to the fact that few measurements of f-NO$_2$ from Euro 6/VI vehicles have been made and the real-world behaviour of such vehicles is uncertain, the final values include an assumption regarding the after-treatment technologies that are expected to be used. This assumption is necessary because NO$_2$ emissions are highly dependent upon the after-treatment technology. For example, SCR can limit f-NO$_2$ to 10-20% in real-world driving, but if a catalysed DPF follows the SCR then this could increase f-NO$_2$ to 50%. The values in Table 4.1 assume that SCR will be the dominant NOx-reduction technology, with some 70% of SCRs preceding the DPF and 30% of SCRs following the DPF.

4.1.2 Results

The time series (2003-2041) of the NO$_x$ and NO$_2$ emission factors for the main vehicle groups in the inventory model, and the associated values of f-NO$_2$, are shown for the ‘highway/freeway’ road type in Figure 4.1. These emission factors were calculated for a speed of 80 km/h, and for each vehicle group they take into account the age distribution of the fleet. Emission factors are presented for situations with and without the adoption of the Euro VI regulation. Whilst the total NO$_x$ emission factors are predicted to decrease with time, the value of f-NO$_2$ exhibits different patterns. The plots show that the model predicts a slight decrease in f-NO$_2$ for petrol vehicles in the future. In the case of light-duty diesel vehicles there is a sharp increase in f-NO$_2$ after 2008, with a peak between 2010 and 2020, and a gradual reduction further into the future. The f-NO$_2$ values for heavy-duty diesel vehicles are relatively stable with time, at around 10-12%. Figure 4.2 shows the equivalent emission factors for the highway/freeway road type, weighted for the default traffic mix for this type of road in each year.
Figure 4.1: Emission factors for NOx, NO2 and f-NO2 from the GMR emissions inventory model. The information relates to the driving conditions and fleet for highways/freeways.
The contributions of the different vehicle groups to the traffic-weighted emission factors for NO\textsubscript{x} and NO\textsubscript{2} are shown in Figure 4.3 (assuming no adoption of Euro VI). These graphs show the disproportionate contribution of diesel heavy goods vehicles to the fleet-weighted emission factor in each year. Moreover, as a fraction of the total emission factor the contribution of HGVs is projected to increase in the future.
Figure 4.4 shows how f-NO\textsubscript{2} varies by road type in the inventory model, based on a nominal traffic composition and speed in each case (assuming no adoption of Euro VI). It can be seen that the values for highway/freeway conditions are somewhat different from those for other road types. This is essentially linked to the higher proportion of heavy-duty vehicles on highways and freeways. In addition, the traffic-weighted f-NO\textsubscript{2} value for highways is predicted to peak at around 14% between 2020 and 2025, whereas on other types of road the value is predicted to peak at a slightly higher value (around 16%) and at a later date (around 2030).

![Figure 4.4: f-NO\textsubscript{2} by road type from the GMR emissions inventory model (no Euro VI)](image)

It was noted in Section 3.1.2 that there are potentially some discrepancies between the actual vehicle fleets in the GMR and the projected fleets in the EPA emissions inventory. These discrepancies are likely to relate mainly to the fuel split for LDVs.

The sensitivity of the inventory projections to the fuel split for cars was investigated. Four different cases were considered (highways only):

- The default projection for the uptake of diesel cars, reaching a maximum of around 18%.
- An accelerated uptake of diesel cars after 2015, with the diesel share gradually increasing to 100% by 2030.
- All cars running on petrol in all years (lower bound NO\textsubscript{X} and NO\textsubscript{2} emissions).
- All cars running on diesel in all years (lower bound NO\textsubscript{X} and NO\textsubscript{2} emissions).

The results are shown for the ‘no Euro VI’ case in Figure 4.5, and for the ‘with Euro VI’ case in Figure 4.6.

The average traffic-weighted NO\textsubscript{X} emission factor is not especially sensitive to the petrol/diesel split for light duty vehicles. For example, in the ‘no Euro VI’ case the assumption that all cars were running on diesel resulted in NO\textsubscript{X} emissions that were between around 15% and 25% higher than in the default case.

NO\textsubscript{2} emissions were more sensitive to the diesel car proportion. The ‘all cars diesel’ case resulted in NO\textsubscript{2} emissions that were around 130% higher than the base case in 2011 and around 60% higher in 2031.
For f-NO\textsubscript{2} the sensitivity to the car fuel split was similar to that for NO\textsubscript{x} emissions. In the default case the long-term value of f-NO\textsubscript{2} stabilised at just below 15%. With all cars running on diesel f-NO\textsubscript{2} peaked at around 25% in 2016, but stabilised at around 17% in the longer term. The results for NO\textsubscript{x} and NO\textsubscript{2} in the ‘with Euro VI’ case are broadly similar to those for the ‘no Euro VI’ case. The main difference is that f-NO\textsubscript{2} stabilises at a higher value and, because of the lower emissions from HDVs, it is more sensitive to the car fuel split.

![Graph of NO\textsubscript{x} emissions over time](image)

Figure 4.5: Sensitivity of f-NO\textsubscript{2} to car fuel split (no Euro VI)
Figure 4.6: Sensitivity of f-NO_2 to car fuel split (with Euro VI)

4.2 Analysis of ambient air quality data

4.2.1 Upwind/downwind method

There are few long-term roadside monitoring sites in Sydney. One monitoring station which has been in place for several years is operated by RMS near to the M5 East Freeway. RMS has named this site ‘F1’. The monitoring station is located approximately 20 metres north of the Freeway, near Flat Rock Road. Given the volume of traffic on the Freeway (around 100,000 vehicles per day), there ought to be a
reasonably strong influence of the traffic on the measured concentrations. It is worth noting, however, that the station is in a dip and close to trees, and there is also a noise barrier between the station and the Freeway. These factors will influence the dispersion characteristics of the site.

The influence of the M5 East Freeway traffic on pollutant concentrations at the RMS F1 monitoring site was firstly investigated using the Openair software (Carslaw, 2015a).

Figure 4.7 to Figure 4.10 on the following page show two plots for NO\textsubscript{X} and NO\textsubscript{2}:

- A ‘weighted mean’ polar frequency plot. This shows the wind directions that contribute most to the overall mean concentration of each pollutant. The ‘weighted mean’ option in Openair provides the percentage contribution by wind direction.

- A bivariate polar plot. This shows how pollutant concentrations vary by wind speed and wind direction, with smoothing techniques giving a continuous surface. The monitoring station is located at the centre of each plot. The axes show the directions from which the wind is coming, and the distance from the origin indicates the wind speed; the further from the centre that concentrations appear, the higher the wind speeds when they were measured. Calm conditions appear close to the centre. The polar plot is a useful diagnostic tool for understanding potential sources of air pollutants at a given site. For many situations an increasing wind speed generally results in lower concentrations due to increased dilution through advection and increased turbulence. Ground-level, non-buoyant sources - such as road traffic - therefore tend to have highest concentrations under low wind speed conditions.

The concentrations of NO and NO\textsubscript{X} are most strongly influenced by light southerly winds (i.e from the direction of the M5 East Freeway). For NO\textsubscript{2} there are additional contributions from higher speed winds from the east.

The influence of the Freeway traffic on NO\textsubscript{X} and NO\textsubscript{2} concentrations at the RMS F1 monitoring site was investigated further by filtering the concentrations by wind direction. The mean concentrations when the monitoring station was downwind and upwind of the Freeway were calculated. The Freeway has an approximately east-west alignment near the monitoring station (a line perpendicular to the road axis was actually 8° to the west of due north). The monitoring station was considered to be upwind of the Freeway when the wind direction was within ±45° of 352°. Similarly, the monitoring station was considered to be downwind of the Freeway when the wind was within ±45° of 172°. These wind sectors are also shown in Figure 4.11. Other roads in the area would have a negligible impact on concentrations at the monitoring site within these wind sectors.

The results are shown in Figure 4.12. It is clear that the concentrations measured when then station is upwind of the road are similar to the concentrations measured at the background sites, especially for NO\textsubscript{X}. Moreover, there is a marked road traffic contribution when the monitoring station is downwind of the road.

The net road traffic contribution – determined as the difference between the mean downwind and upwind concentrations - is given in Table 4.2. The traffic contribution to NO\textsubscript{X} has decreased with time. The traffic contribution to NO\textsubscript{2} has increased and then stabilised. The value of f-NO\textsubscript{2} (calculated from the traffic increments for NO\textsubscript{X} and NO\textsubscript{2}) reflects these changes, increasing from 9% in 2008 to 14% in 2012, and then reducing slightly in 2013. This method for estimating f-NO\textsubscript{2} is, of course, quite simplistic, and ignores the complex chemistry of NO, NO\textsubscript{2} and ozone in the vicinity of roads. The resulting values - which are assumed to relate to tailpipe emissions - should therefore be considered as indicative and potentially overestimates given that some of the ‘road increment’ NO\textsubscript{2} may be secondary in nature.
Figure 4.7: Polar frequency plot – NOₓ (RMS F1)

Figure 4.8: Bivariate polar plot – NOₓ (RMS F1)

Figure 4.9: Polar frequency plot – NO₂ (RMS F1)

Figure 4.10: Bivariate polar plot – NO₂ (RMS F1)

Figure 4.11: Location of RMS F1 monitoring station and wind direction criteria
Figure 4.12: Mean concentrations at the RMS F1 monitoring station by wind direction

Table 4.2: Road contribution of RMS site F1

<table>
<thead>
<tr>
<th>Year</th>
<th>NO\textsubscript{X} (\textmu g/m3)</th>
<th>NO\textsubscript{2} (\textmu g/m3)</th>
<th>f-NO\textsubscript{2} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>89.3</td>
<td>7.9</td>
<td>9%</td>
</tr>
<tr>
<td>2009</td>
<td>86.7</td>
<td>8.7</td>
<td>10%</td>
</tr>
<tr>
<td>2010</td>
<td>88.9</td>
<td>11.5</td>
<td>13%</td>
</tr>
<tr>
<td>2011</td>
<td>79.9</td>
<td>10.9</td>
<td>14%</td>
</tr>
<tr>
<td>2012</td>
<td>81.6</td>
<td>11.1</td>
<td>14%</td>
</tr>
<tr>
<td>2013</td>
<td>65.1</td>
<td>8.6</td>
<td>13%</td>
</tr>
<tr>
<td>2014</td>
<td>81.5</td>
<td>15.0</td>
<td>18%</td>
</tr>
</tbody>
</table>

4.2.2 Openair ‘calcFno2’ function

The Openair software contains a simple constrained chemistry model (as described in Carslaw and Beevers, 2005) that can be used to calculate the NO\textsubscript{2}/NO\textsubscript{X} ratio in vehicle exhaust based on ambient air quality measurements. This is provided in Openair’s ‘calcFno2’ function. The method works by trying to distinguish between NO\textsubscript{2} that is directly emitted from vehicles and that derived through the reaction between NO and O\textsubscript{3}. There are several assumptions and criteria that need to be considered when using this function. These include the following:

- The method is most reliable at estimating f-NO\textsubscript{2} when the roadside concentration is much greater than the background concentration.
- The function works best if the chosen background site is reasonably close to the roadside site and not greatly affected by local sources (which it should not be as a background site).
- As a simplifying assumption, the time available for chemical reactions to take place is set to 60 seconds.

The Openair calcFno2 function was applied to the data from the RMS F1 monitoring site. There is no background monitoring station in the immediate vicinity of the F1 site. In the Openair analysis, the data from the RMS F1 monitoring site were therefore used in conjunction with data from the nearest OEH urban background site, located at Earlwood, approximately three kilometres away. A closer background site would have been better suited to the analysis.
The results obtained are shown in Figure 4.13. There seems to be a pronounced seasonal effect in the results. This suggests that the method is struggling to distinguish between the NO$_2$ sources. In these situations both the NO + O$_3$ and the primary NO$_2$ tend to vary linearly with NO$_x$, making it difficult to partition between them. The calcFno2 function has been developed primarily for application in the UK. It is possible that the stronger photochemical activity in Sydney makes it more challenging to obtain meaningful results (Carslaw, 2015b). Nevertheless, the general trend obtained using the function is broadly consistent with the results from the other data sets presented in this Report.

![Figure 4.13: Trend in f-NO$_2$ at the RMS F1 monitoring site, as determined using the calcFno2 function in Openair](image)

4.2.3 Openair ‘linearRelation’ function

Most of the ambient air quality monitoring at roadside locations in Sydney has not included the measurement of O$_3$. However, roadside O$_3$ measurements have been included in recent monitoring campaigns for the NorthConnex and WestConnex projects. In such cases the linearRelation function in Openair can be used to estimate f-NO$_2$. This function considers the relationships between two pollutants, based on linear regression fits to the data over different time periods. If the dataset contains NO$_x$, NO$_2$ and O$_3$, the y axis in the regression can be chosen as total oxidant ‘OX’ (NO$_2$ + O$_3$). At roadside sites the oxidant slope provides a good indication of the likely ratio of NO$_2$/NO$_x$ in vehicle exhaust (Carslaw, 2015a).

The following monitoring sites were included in this analysis:

- WestConnex M4 East, Concord Oval. This site was next to Parramatta Road. Data were available between November 2014 and January 2015.
- NorthConnex, Brickpit Park. This site was next to Pennant Hills Road. Data were available between December 2013 and January 2015.
- NorthConnex, Observatory Park. This site was next to Pennant Hills Road. Data were available between December 2013 and January 2015.

The results are shown in Figure 4.14, Figure 4.15 and Figure 4.16. For the Concord Oval and Brickpit Park sites there again appears to be a seasonal effect on primary NO$_2$, with higher values in spring and winter. At Observatory Park, on the other hand, there is no strong seasonal influence. Further investigation would be required to determine whether these effects are real or artefacts of the method. There are also some differences in the absolute f-NO$_2$ values. At Concord Oval these vary between 8% and 15%, and at Observatory Park the value is around 10%. However, lower values (3% to 8%) were observed at Brickpit Park.
Figure 4.14: f-NO₂ at the WestConnex Concord Oval site between November 2014 and February 2015

Figure 4.15: f-NO₂ at the NorthConnex Brickpit Park site between December 2013 and January 2015

Figure 4.16: f-NO₂ at the NorthConnex Observatory Park site between December 2014 and January 2015
4.3 Analysis of data from Sydney tunnels

4.3.1 Lane Cove Tunnel

Vehicle emissions in the Lane Cove Tunnel (LCT) were recently investigated by Boulter and Manansala (2014), and the original work has been updated and refined for this Report to provide further insight into primary NO\textsubscript{2} emissions.

The ventilation system in the LCT results in all vehicle emissions being released from the stacks. No pollution is released from the tunnel portals. This makes it relatively straightforward to estimate emission factors for the vehicles in the tunnel. The in-stack measurements at the LCT provided useful information on primary NO\textsubscript{2} emissions from the vehicles in the tunnel, but in this case the analysis was conducted using hourly data from October and November of 2013 (the only period for which data had been provided). A multiple linear regression (MLR) approach was used to determine mean emission factors for NO\textsubscript{X} and NO\textsubscript{2} (in g/km) based on the LCT ventilation stack emission rates. The inputs to the MLR were the hourly mean emission factor for the traffic (dependent variable) and the corresponding numbers of LDVs and HDVs in the tunnel each hour (independent variables). A similar MLR method has been used in previous studies to derive emission factors (e.g. Imhof et al., 2005; Colberg et al., 2005).

The following regression model was applied to derive the emission factors:

\begin{equation}
EF_{\text{total}} = (N_{\text{LDV}} \times EF_{\text{LDV}}) + (N_{\text{HDV}} \times EF_{\text{HDV}}) + c
\end{equation}

where:

- \(EF_{\text{total}}\) = the hourly mean emission factor for all traffic in the tunnel, as determined from the in-stack measurements [g/km/h]
- \(N_{\text{LDV}}\) = the number of LDVs in the tunnel per hour [vehicles/hour]
- \(N_{\text{HDV}}\) = the number of HDVs in the tunnel per hour [vehicles/hour]
- \(EF_{\text{LDV}}\) = the emission factor per LDV in the tunnel [g/vehicle.km]
- \(EF_{\text{HDV}}\) = the emission factor per HDV in the tunnel [g/vehicle.km]
- \(c\) = a constant (intercept on y-axis)

As the stack emission rates had already been adjusted to allow for the background contribution, and there were no other in-tunnel emission sources, it was considered acceptable to run the regression model with the constant constrained to zero.

The observed values of \(f\text{-NO}_2\) calculated from the MLR analysis are given in Table 4.3. The average measured traffic-weighted values of \(f\text{-NO}_2\) for all vehicles were 13% in the eastbound tunnel (in which the road is predominantly uphill) and 17% in the westbound tunnel (in which the road is predominantly downhill). Whilst the \(f\text{-NO}_2\) values for each vehicle group was similar in both the eastbound and westbound tunnels, the much lower contribution from HDVs in the westbound tunnel meant that LDVs had a larger impact on the traffic-weighted \(f\text{-NO}_2\) value.

<table>
<thead>
<tr>
<th>Vehicle group</th>
<th>Eastbound (EB)</th>
<th>Westbound (WB)</th>
<th>f-NO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO\textsubscript{X} (g/kvm)</td>
<td>NO\textsubscript{2} (g/kvm)</td>
<td>NO\textsubscript{X} (g/kvm)</td>
</tr>
<tr>
<td>LDV</td>
<td>0.29</td>
<td>0.06</td>
<td>19%</td>
</tr>
<tr>
<td>HDV</td>
<td>8.42</td>
<td>0.37</td>
<td>4%</td>
</tr>
<tr>
<td>All vehicles(^{(a)})</td>
<td>0.61</td>
<td>0.08</td>
<td>13%</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Weighted for traffic volume.
4.3.2 M5 East Tunnel

Concentrations of NO and NO\textsubscript{2} have been measured in the ventilation stack of the M5 East tunnel for more than a decade. For the purpose of this study, hourly average in-stack measurements and the corresponding traffic data were examined for the period between 2004 and 2014. Unfortunately, the in-stack data supplied by RMS had not been validated, and were of very variable quality. Whilst an attempt was made to render the data useable, it was concluded that it would not be possible to determine robust emission factors from the measurements.

A sample of monitoring data from inside the M5 East Tunnel was also provided by CSIRO. The monitoring data was collected as part of a baseline study to evaluate the effectiveness of the introduction of smoky vehicle fines in the Tunnel (Halliburton et al., 2014). However, the dataset only covered a short period of time (three days of November 2014), and measurements were only conducted at a single location in the tunnel. The extent to which the data were representative of average traffic and concentrations in the tunnel was therefore quite uncertain, and therefore the data have not been presented in this Report.
5 SUMMARY AND CONCLUSIONS

This Report has summarised the issues associated with primary NO₂ emissions from road vehicles. Most of the evidence to date has been collected overseas. In previous overseas studies primary NO₂ has been quantified using laboratory measurements, remote sensing measurements, ambient air quality monitoring data and tunnel air quality data. A general finding of these studies has been that the NO₂/NOₓ ratio in vehicle exhaust (f-NO₂) has increased due to increased market penetration of diesel vehicles and the emissions of NO₂ from technologies such as regenerative particle traps.

The Report has provided new evidence of values and trends in primary NO₂ for vehicles on the road in Sydney. Several different data sets and analytical techniques have been presented in the Report, including emission modelling, the analysis of ambient air quality measurements, and the analysis of emissions from tunnel ventilation stacks. The ‘highway/freeway’ road type is likely to be the most relevant to tunnels in Sydney, as it will most accurately reflects the corresponding traffic composition and driving conditions. In addition, more data are available for this type of road than other types. The values of f-NO₂ obtained for highway-type roads in the various analyses are presented in Table 5.1. The exceptions are the NorthConnex and WestConnex datasets, which relate to trunk roads rather than highways.

<table>
<thead>
<tr>
<th>Year</th>
<th>GMK Inventory model¹</th>
<th>Ambient: downwind-upwind (F1)</th>
<th>f-NO₂ by approach (values are traffic-weighted)</th>
<th>Ambient: Openair (F1-Earlwood)</th>
<th>Ambient: Openair (WestConnex, NorthConnex)²</th>
<th>LCT ventilation stacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>9%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>10%</td>
<td>10%</td>
<td>8%</td>
<td>10%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>10%</td>
<td>13%</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>11%</td>
<td>14%</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>11%</td>
<td>14%</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
<td>-</td>
<td>13% (EB), 17% (WB)²</td>
<td>-</td>
</tr>
<tr>
<td>2014</td>
<td>12%</td>
<td>18%</td>
<td>15%</td>
<td>~5-10%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2020</td>
<td>14%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2025</td>
<td>15%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2030</td>
<td>14%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Based on data for October and November of 2013 only.
(b) Not highways

Although a range of different data sets and methods have been used, the level of agreement in both the f-NO₂ values and the trend is good. The evidence suggests that there has been a gradual increase in f-NO₂ in recent years for highways, from less than 10% before 2008 to around 15% in 2014. The increase has not been as pronounced as that observed in the UK, and it appears that although the average value of f-NO₂ for highway traffic may increase further in the future, it will probably not increase much further and will eventually start to decrease. The recent NorthConnex and WestConnex datasets have shown lower f-NO₂ values (less than 10%) , but the monitoring stations are not near highways, and therefore traffic speed and composition may be atypical.

The main reason for the increase in f-NO₂ recent years is probably linked to the increased market penetration of diesel cars into the Sydney vehicle fleet. There is insufficient information on the types and distributions of exhaust after-treatment devices in use on vehicles in Sydney, and so it is not possible to determine the extent to which this is a contributing factor. Further information of this type would be beneficial to those studying the impacts of road transport on air quality in Sydney.
The findings of this work, whilst they should be viewed as indicative at this stage, could be used to support and refine calculations of primary NO\textsubscript{2} emissions from road traffic in Sydney, including calculations to support air quality impact assessments and studies of in-tunnel air quality. In particular, it appears from the measurements in Sydney that the approach of incorporating the European values for f-NO\textsubscript{2} in the NSW EPA inventory model has produced satisfactory results.
REFERENCES

Harley R A (2014). On-Road Measurement of Emissions from Heavy-Duty Diesel Trucks: Impacts of Fleet Turnover and ARB’s Drayage Truck Regulation, Department of Civil and Environmental Engineering, University of California, Berkeley, CA.

NSW EPA (2012a). Air Emissions Inventory for the Greater Metropolitan Region in New South Wales - 2008 Calendar Year. Technical Report No. 1 - Consolidated Natural and Human-Made Emissions: Results. NSW Environment Protection Authority, Sydney South. The inventory data were supplied to Pacific Environment by NSW EPA.

Appendix A: NSW EPA analysis of vehicle registration data
An examination of vehicle registration (sales) data in NSW has recently been conducted by NSW EPA (Jones, 2015). Whilst there are some differences between the geographical coverage and the definition of vehicle groups, the EPA analysis has highlighted some discrepancies between the actual vehicle sales figures and the projections. These are shown in the Figures below.

Figure A1 shows the diesel proportions for cars and SUVs. NSW EPA note the following:

- The % of new passenger cars (PC = cars and people-movers) that are diesel is over estimated in the 2008 inventory projections for 2014 at 19%, versus 8% 2014 RMS data 8% (blue lines).
- The % of new 4WD that are diesel is in good agreement (red lines);
- The proportion of passenger vehicles (PV = cars + people-movers + SUV) that are SUVs is underestimated in the inventory projections for 2014 at 29%, vs RMS data 37% (green lines).

![Figure A1: Diesel proportions for cars and SUVs](image)

Figure A2 shows the total passenger vehicle fleet (cars + people-movers + SUV) and light commercial vehicles. NSW EPA note:

- The % of total new passenger vehicles (cars, people-movers and 4WD/SUV) that are diesel is overestimated in the 2008 inventory projections for 2014 at 25% vs RMS 19%;
- The % of new LCV that are diesel is underestimated in the 2008 inventory projections for 2014 at 61% vs RMS 89%.

9 The vehicle registration data to the end of 2014 were NSW-wide, whereas the inventory projection were for the GMR only. There may be some bias due to the different geographical areas (e.g. there may be more diesel vehicles and more SUV/4WD in regional areas). In addition, for LCVs the inventory defines these as GVM <=3500kg in line with the ADR’s (i.e. primarily utes and vans), while the RMS rego data lists light trucks as those commercial vehicles with GVM <=4500 kg; thus there may be a bias again to diesel in the RMS as those vehicles 3.5t – 4.5t will be almost exclusively diesel.
Figure A2: Diesel proportions for all passenger vehicles and light commercial vehicles