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The Hon Melinda Pavey MP  
Minister for Water, Property and Housing  
GPO Box 5341 
SYDNEY NSW 2001 
 

 

Dear Minister 

Independent Review of Climate Risk Method for the Regional Water Strategies program 

In September 2019, you requested that I chair an independent expert panel to assess the 
proposed methodology being used by DPIE-Water to incorporate climate risk into water 
resources planning as part of the development of Regional Water Strategies in NSW.  
 
In April 2020, I provided you with the Panel’s report. Subsequent to this, the Department has 
been undertaking work to implement several of the recommendations made in the Panel report. 
 
The Panel was reconvened in December 2020 at the request of DPIE-Water to provide 
independent comment on the suitability of the methods to address the recommendations, 
particularly testing for non-stationarity in the historical record and incorporating it into the 
stochastic modelling for the Southern Inland NSW and Greater Sydney regions.   
 
Please find enclosed the Panel’s advice.  
 
I would like to acknowledge the contribution of Panel members: Professor Bryson Bates, 
Emeritus Professor George Kuczera, Professor Andy Pitman and Dr Scott Power, as well as the 
advice and support provided by staff and other stakeholders. 
 
Yours sincerely 
 
 
 
Dr Chris Armstrong PSM 
Deputy NSW Chief Scientist & Engineer 
Chair, Independent Expert Panel 
9 May 2021 
 
  
  



 

4 
 

CONTENTS 

Table of Contents 

CONTENTS ....................................................................................................................................................... 4 

EXECUTIVE SUMMARY AND RECOMMENDATIONS .......................................................................................... 5 

FINDINGS AND RECOMMENDATIONS ...................................................................................................................... 7 

1 BACKGROUND AND SCOPE .................................................................................................................... 11 

2 COMMENT ON EVIDENCE OF NON-STATIONARITY FOR SOUTHERN BASIN AND GREATER SYDNEY 
REGIONS ........................................................................................................................................................ 14 

2.1 COMMENTS ON NON-STATIONARITY IN SOUTHERN BASIN ............................................................................ 14 
  
  
  

2.2 GREATER SYDNEY REGION – TEST FOR AND EVIDENCE OF NON-STATIONARITY .................................................... 16 
 

 
  

2.3 ATTRIBUTION OF NON-STATIONARITY SIGNAL ............................................................................................. 17 
2.4 NON-STATIONARITY AND ITS IMPACT ON PET, ET, CLIMATE DRIVERS .............................................................. 18 

  
  
  

3 COMMENT ON APPLICATION OF NON-STATIONARITY TO STOCHASTIC MODELS................................... 21 

3.1 CHOOSING THE APPROACH/MODELS ....................................................................................................... 21 
  
  
  
  
 

 
  

3.2 MODEL SET UP: VALIDATION, SIGNAL TO NOISE, BASELINE, LIMITING CASES, SCALING ........................................... 29 
  
  
  
  
  
  

3.3 TEST/VALIDATE THE DPIE STOCHASTIC MODEL USING STREAMFLOW DATA ........................................................ 34 
  
  

4 FURTHER COMMENTS - PROPOSAL FOR GREATER SYDNEY REGION ...................................................... 37 

  
  
  

APPENDIX 1: DRAFT UOA REPORT ................................................................................................................. 39 

APPENDIX 2: PROPOSED UOA METHODOLOGY .............................................................................................. 51 

APPENDIX 3: PROPOSAL UON METHODOLOGY ................................................................................................ 8 

APPENDIX 4: ROLLING ORIGIN APPROACH TO MODEL EVALUATION ............................................................. 11 



 

5 
 

 

EXECUTIVE SUMMARY AND RECOMMENDATIONS 

The water modelling group within the NSW Department of Planning, Industry and 
Environment (DPIE-Water), working with the University of Adelaide (UoA) and the University 
of Newcastle (UoN), is assessing the presence of non-stationarity of climate and proposing 
approaches to incorporate non-stationarity into climate modelling for the Regional Water 
Strategies (RWS) for Southern Inland NSW and Greater Sydney regions. This work is testing 
for the presence of signals that the climate has changed over recent decades and if it has, 
how the change should be incorporated into modelling undertaken to inform climate risk. If 
the climate has started changing over the recent decades and this is not accounted for in the 
stochastic modelling, future water security risk may be underestimated. 

This issue was raised in the April 2020 report by the Independent Expert Panel (the Panel) 
assessing the climate risk method for the RWS. The Panel was formed at the request of the 
Minister for Water, Property and Housing in September 2019 to provide independent 
evaluation of the methods used to assess and account for climate risk in modelling future 
water supplied for the twelve RWS being developed across NSW.  

Note that this report does not provide full background to the RWS and the issues raised in 
the April 2020 report. It is advised that this report is read in conjunction with the April 2020 
report. 

DPIE-Water, in conjunction with UoA and UoN, proposed methodologies to the Panel for 
addressing recommendations made in the April 2020 report. These included addressing the 
question of the presence of non-stationarity and how to include it in the stochastic modelling, 
as well as a recommendation to use NARCliM 1.5 data, as it was becoming available at the 
time.  

The scope of this advice is to review three documents: 

1. Draft report: Devanand, A., Leonard, M. and S. Westra (2020). Implications of Non-
stationarity for Stochastic Time Series Generation in the Southern Basins. UoA 
(Appendix 1) 

2. Proposed methodology: Provision of stochastic climatic data for the Southern Basin 
representing historical, current and future climate conditions. Proposal by UoA to DPIE-
Water, 28th August 2020. (Appendix 2) 

3. Proposed methodology: Provide stochastic climatic data for the Greater Sydney 
Region representing historical, current and future climate conditions. Proposal by 
University of Newcastle to DPIE-Water, 27 November 2020. (Appendix 3) 

The Panel recognises some of the issues raised here are complex and challenging to 
resolve. Some of the issues are the subject of cutting edge, ongoing research, and 
strategies to quantify climate risk will require ongoing attention into the future and likely 
adjustment as understanding improves. This Panel advice elaborates on the issues and 
suggestions to address them. The Panel acknowledges that some of these will require a 
longer timeframe to resolve. 

Overall, the Panel recommends proceeding with both the UoA and the UoN proposals.  

There was Panel consensus that there is no definitive approach to account for non-
stationarity in the observed record or future climate. The goal here, ultimately, is to estimate 
future catchment yield, which requires a series of steps that inherently involve a cascade of 
uncertainty. 

Addressing the preferred methodology of including non-stationarity in stochastic models is 
complex and was subject to Panel debate. The Panel highlighted the need to be rigorous in 
documenting historical non-stationarity as a foundation to future work. 
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The Panel suggested a precautionary approach is taken in that if there is an error, it is better 
to over-estimate risk of drying than under-estimate it, and the Panel is supportive of using 
scenarios to test various possibilities and manage the high uncertainty. 

The Panel is also supportive of using a ‘storyline’ approach, where one thinks about the 
whole system and how it interacts with the landscape and water users (e.g. urban water 
supply vs irrigation valley). By developing a conceptual storyline for a catchment, 
components of the model can be designed and applied to reflect the conceptual 
understanding of the system. 

The following table describes the Panel’s recommendations on the main process steps 
outlined in the UoA and UoN proposals to incorporate non-stationarity into the stochastic 
models. Additional recommendations to address information gaps related to this topic, but 
that go beyond the immediate proposals from UoA and UoN, and are on a longer timeframe, 
are also included. More minor suggested improvements to the draft UoA report by Devanand 
et al are within the body text of this report (Section 2.1.3) and are not reflected in 
Recommendation 2 in the table.  
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FINDINGS AND RECOMMENDATIONS 
No. Step/topic Panel recommendation/comment Priority  Timeframe Applies to 

1 Overall - proposals for Southern 
Basin and Greater Sydney 

Panel recommends proceeding with both proposals1 High Short 

(0-3 
months) 

UoA; UoN 

2 Test for non-stationarity in 
Southern Basin 

The Panel’s assessment is that the approach used in the UoA draft report is sound, and the 
outcomes revealed statistically significant non-stationarity in some, but not all, places. This 
analysis is consistent with expectations from other relevant research. 

N/A N/A UoA 

3 Testing for non-stationarity in 
streamflow for Greater Sydney 

The Panel noted that testing for non-stationarity in Greater Sydney is expected to be affirmative 
for temperature and unclear for rainfall. The Panel notes that testing for non-stationarity of 
events that drive rain like East Coast Lows (ECLs) would be useful information. However, the 
statistics of checking for non-stationarity on something like ECLs may be problematic, given that 
they are relatively infrequent events.  

a) The Panel recommends that testing for non-stationarity of temperature and rainfall is not 
undertaken as proposed at this time, as the Panel recommends that other activities identified as 
having a higher priority are conducted first, and that this additional exercise is then only 
undertaken if remaining time and resources allow.  

b) However, the Greater Sydney region has long streamflow records dating back to 1910. Given 
there is published evidence of change in these records in the last 30 years and given the timing 
of the current Greater Sydney water plan, it is recommended that non-stationarity in the 
streamflow record be investigated with the goal of understanding the causes. This will allow 
immediate assessment of current climate risk on Greater Sydney Region’s water supply. 
Focussing on streamflow avoids the need to deal with non-stationarity in rainfall, PET/ET and 
rainfall-runoff.  

The UoN stochastic model works on seasonal timescales and disaggregates to shorter time 
scales using a non-parametric method. It is well suited for modelling streamflow. 

a) Low (if 
undertak
en) 

b) High 

a) N/A 

b) Short 

a) UoN (if 
undertaken) 

b) UoN for 
stochastic 
modelling and 
hydrology 

If time doesn’t 
permit, potential 
external parties 
(e.g. UNSW) for 
investigation of 
causes and 
processes. 

4 Options (5 total) presented by UoA 
to account for non-stationarity into 
stochastic model generation 

The Panel consensus is that there is no definitive approach to account for non-stationarity in the 
observed record or future climate. Hence the Panel supports a multi-pronged approach, 
particularly where approaches have different conceptual foundations.2 

a) High 

b) High3 

a) Short  

b) Short3 

a) UoA; UoN 

b) UoN 

 
1 The Panel noted the following recent paper may be useful when considering the recommendations. Fowler, Keirnan; Acharya, Suwash Chandra; Addor, Nans; Chou, 
Chihchung; Peel, Murray (2020): CAMELS-AUS v1: Hydrometeorological time series and landscape attributes for 222 catchments in Australia. PANGAEA, 
https://doi.pangaea.de/10.1594/PANGAEA.921850 
2The Panel does not have a single endorsed approach to address these difficult problems and multiple lines of evidence are preferred. The Panel also noted it was too early to 
settle on a particular approach. Some Panel members were of the view that Recommendation 4a (Option 3- hybrid historical baseline) was the best of the options as it is 
consistent with a “preparedness rather than prediction” paradigm, which was deemed more likely to lead to a strategy that is more robust to climate variations. Other Panel 
members expressed concerns about the baseline approach to adequately describe current climate risk. These issues are discussed further in the report. 

 

https://doi.pangaea.de/10.1594/PANGAEA.921850
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a) The Panel recommends Option 3 – hybrid-historical baseline - as a worthwhile option overall 
for UoA and UoN work. This uses a stationary stochastic model with a representative stationary 
climate record. There are two possibilities: fit to baseline record (which is assumed to be 
sufficiently short to be near stationary) or adjust pre-baseline record to match certain statistics in 
the baseline record (as done by Melbourne Water) and then fit to longer record. 

b) For UoN, applicable to the Greater Sydney region where the relevant data is available, 
another worthwhile option is use of a nonstationary stochastic model approach. UoN is already 
capable of applying such a model to streamflow in Sydney region. It is recommended UoN’s 
remit be extended to applying this approach and comparing it with the baseline approach.3 

5 Adoption of NARCliM to inform 
climate change 

The Panel recommends using NARCliM 1.5, but undertake due diligence as follows in 
recommendation 6. 

High Short UoA; UoN 

6 Validation of NARCliM model 
outputs to statistics of 
hydrological importance including 
extreme or dam filling events 

The NARCliM developers should work with hydrological modelers to identify key metrics in each 
catchment from a hydrological perspective that could be used to validate how well NARCliM 
captures statistics of hydrological importance. 

The NARCliM 1.5/2.0 Technical Reference Group, in which DPIE Water participates, may be the 
suitable mechanism for this work to be undertaken. It will be important for the metrics to be 
documented, agreed and peer reviewed. 
 

High Medium 
/Long 

 

DPIE NARCliM 
team with DPIE 
water resource 
modelling team, 
UoA/UoN 
stochastic 
modelling 
expertise 

7 Signal to noise and baseline –  

The issue of signal to noise is 
important and confidence in the 
approach will largely depend upon the 
ability to manage this issue. The 
baseline period will affect the signal to 
noise ratio. 4 

 

The Panel recommends that UoA initially (then UoN) investigate the signal to noise ratio to 
assess options regarding scaling. 

Choosing a baseline starting point is complex. Victoria DELWP chose 1975, but some Panelists 
were uncomfortable with using 1975 as a starting point, as there is a significant change signal 
over that period. Until the trade-offs are better understood, the Panel cannot recommend a 
specific baseline period.  

The rolling evaluation approach (Appendix 4) (or something similar) might provide insight into the 
temporal stability of simulated streamflow and hence changes/trends in hydroclimatic regime. 
There is no guarantee that any such change will occur simultaneously across the regions or at 
the same rate. 

High Short UoA (first) 

UoN (pending 
outcomes of 
UoA) 

8 Estimating upper and lower 
limiting cases of climate risk on 
water security4 

As it is not complex to undertake, the Panel suggests upper and lower limiting cases for climate 
risk are estimated as a ‘reality’ check on other approaches. Note this is the approach used by 
NARCliM. 

Medium Short UoA; UoN 

 
3 The Panel is of the view that Recommendation 4b is feasible for UoN to undertake in a short time frame and high priority. The software is developed, temperature data is 
readily available, as are long streamflow records, for the Greater Sydney region/catchment which is largely unaffected by land use changes. Running the model to produce 
diagnostics should take minimal time. The Panel considers this recommendation important because there is published evidence of significant change in streamflow 
distributions over last 30 years. A stationary streamflow model badly fails split sample tests, and if used, would significantly overestimate current streamflow resources.  

4 The Panel views Recommendations 7 and 8 as producing outcomes that may help better understand the trade-offs and risks with using the baseline approach (Rec 4a). 
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For the lower limiting case, calibrating a stationary stochastic model to the full observed record 
(1910 – 2020) without adjustment ignores the drying change signal and thus will provide an 
underestimate of current drought risk. 

The upper limiting case can be estimated in two ways: calibrate to a recent past record (1990 – 
2020)5 or calibrate to the full observed record with constraint on selected statistics. 

9 Validate against streamflow data – 
The Panel expressed discomfort 
testing the DPIE stochastic model 
purely in rainfall/evapotranspiration 
space; important to validate using 
streamflow data 

Stochastic rainfall approach needs to be tested against reliable streamflow records using split 
sample testing regime or rolling origin approach to model evaluation – run through rainfall/runoff 
models and compare against long streamflow records. Test the DPIE stochastic model’s 
performance through a forensic look at the rainfall characteristics of dam filling events. 
Determine metrics that impact water availability and how well the model performs against those.  

UoA/UoN to provide stochastic rainfall and ET. It is expected DPIE-Water will run forcing through 
their calibrated models and UoA/UoN will undertake the split-sample and/or rolling origin 
analysis. There may also be a need to apply post-processing algorithms, which has a precedent 
through work done by BOM and other parties.6  

High Medium DPIE Water 
modellers 
working with 
UoA; UoN 

 

10 Weather systems such as ECLs 
typing– note there are multiple types 
of ECLs (Section 4.1.1) 

Longer term, consider ECLs by type and mechanism to better assess their impacts, as there 
may be a different response according to the mechanism. Other weather systems could also be 
looked at. 

Medium/
Low 

Long (2-3 
years) 

External 
university 
research (e.g. 
UNSW, Monash 
or UoMelb) 
working in 
partnership 
with/contribution 
from DPIE 

11 PET vs ET (and analysis of 
changing vegetation effect on flow) 

 

Do not assume (or prescribe) changes in PET moving forward – keep PET at levels reflecting the 
last 20 years. While PET will increase in the future, this will likely be an artefact of its formulation 
and actual ET may not change in ways consistent with PET.7  

High Medium/ 
long 

DPIE Water 
modelling team 
with external 
partners (e.g. 

 
5 This situation assumes current hydroclimate is represented by period 1990-2020. Split sample testing suggests this period is different from pre-1990. The post-1990 record 

contains two major droughts. As the 1990-2020 stationary scenario assumes this is the new normal, it is considered an upper case. This is similar to the DELWP approach; 
however, some of the climate change scenarios used by Victoria are more severe than assuming their stationary post-1997 record.  

6 Note: DPIE provided the Panel with information on Quality Control (QC) work undertaken to address this issue. The Panel noted that the QC process used by DPIE does not 
mention split sample testing, which is arguably the most effective tool to detect non-stationarity. The tests described in the QC document are necessary but not sufficient. The 
Panel has experience with models that can pass the tests described in the QC document but fail split sample tests. This can occur because the QC tests are focussing on 
properties of marginal distributions (i.e. properties of the whole record), and they are not designed to look for change. 

For the QC tests described by DPIE, the Panel recommends the use of p-values to evaluate the consistency of the observed statistics with model sampling distributions.  

The Panel was not aware of DPIEs experience using the QC tests. However, the Panel noted that unless the rainfall-runoff model has a high goodness of fit score, they 
suspect tests dealing with variability and extremes may not fare well. There are many tests available, but given DPIE’s objectives, a judicious selection should lead to a small 
suite of options. Given there is a distinct possibility of trends in the observed data, the Panel doesn’t recommend using the correlation coefficient. 

7There is ongoing discussion about the shortfalls if using PET in some modelling. This issue will be looked at in the Community of Practice and in longer term research. 
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This work needs to examine vegetation’s role in linking climate change with soil moisture and 
catchment yield. 

UNSW, CSIRO 
CABLE team) 

12 Non-stationarity of climate drivers Adding climate drivers to stochastic models increases their complexity, and the challenge is to 
show evidence that doing this provides statistically significant improvements to the 
rainfall/streamflow simulations. DPIE should keep abreast of advances in the relevant climate 
driver/teleconnection research to ensure that approaches used reflect scientific consensus on 
non-stationarity of climate drivers. This may be addressed through the previously recommended 
Community of Practice. 

Medium Long DPIE  
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1 BACKGROUND AND SCOPE 

In September 2019, the Minister for Water, Property and Housing, the Hon Melinda Pavey 
MP, requested that the Deputy Chief Scientist & Engineer chair an independent expert panel 
(the Panel) to provide advice on the incorporation of climate risk into the development of 
Regional Water Strategies (RWS).  

The Panel includes expertise in climate drivers, variability and change, extreme weather 
events, hydrology and statistics and is comprised of: 

● Dr Chris Armstrong, Deputy NSW Chief Scientist & Engineer (Chair) 
● Professor Bryson Bates, Adjunct Professor, School of Agriculture and Environment, 

University of Western Australia 
● Emeritus Professor George Kuczera, School of Engineering, The University of 

Newcastle 
● Professor Andy Pitman, Director, Australian Research Council Centre of Excellence 

for Climate Extremes, Climate Change Research Centre, UNSW Sydney 
● Dr Scott Power, Adjunct Professor, School of Earth, Atmosphere and Environment, 

Monash University. 

The Panel provided a report, Independent review of the climate risk method for the NSW 
Regional Water Strategies Program, to the Minister in April 2020. Background to the RWS, 
the Panel’s role and specific advice are contained within that report, and this advice should 
be read in conjunction with the April 2020 report. 

Since then, the methodology to incorporate climate risk into the RWS has evolved to 
address some key recommendations from the April 2020 review, including: 

Recommendation 4: DPIE-Water engages external expertise to explore options to 
improve proxy records by e.g. obtaining and incorporating local proxy records. This may 
go some way toward improving the situation where current proxy records are derived from 
distant locations with possibly different climate influences. Efforts to improve both the 
quality and quantity of proxy records could improve our understanding of climate 
variability. Moreover, the (possibly interactive) climatic variables that affect the proxies 
need to be clearly identified by experts. (Medium priority: Long term) 

Recommendation 6.2: DPIE-Water, in collaboration with experts in climate science and 
statistics, to explore alternative approaches to generating randomised samples as part of 
the future research program, particularly for regions where it is not clear what the 
dominant driver is or where there are multiple dominant drivers. (Medium/High priority: 
Short, then Long term) 

Recommendation 7  
DPIE-Water engages external expertise to undertake a two-step approach to investigate 
stationarity to manage the risk that models may underestimate current and future climate 
risk. The objective is to capture the current climate risk and a baseline that reflects this.  
 
First Step (High priority: Short term)  
The first step is to make a careful assessment of non-stationarity in the observed record. 
Without pre-empting such an assessment two useful methods are described.  
 
Step 1_Method 1  
Split-sample testing or hold-out validation splits the observed record into two parts. The 
stochastic model can be calibrated to each part and the sampling distributions of the 
parameters compared to determine if there is evidence of significant differences. 
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Alternatively, the model can be calibrated to one part and its performance in the second 
part assessed using diagnostics based on predictive distributions.  
This approach implicitly assumes the record used for calibration is stationary, so care is 
required in deciding how to split the observed record. It could be split as follows: 

● 1990 reference - the observed record could be split into pre- and post-1990 
intervals  

● Drought reference - the record used for validation and prediction could be chosen 
with regard to the Millennium Drought and the current drought, with three different 
calibration periods 1) from start of record (SOR) to the beginning of Millennium 
Drought; 2) from SOR to end of Millennium Drought; 3) from SOR to beginning of 
current drought; with the three prediction periods being from the end of the 
calibration period to today. A variation on this scheme is to constrain the model 
calibration periods to be the same length, so the earliest parts of the historical 
record are discarded for Run numbers 2) and 3)  

 
Using both of these approaches (1990 reference and drought reference) could be prudent 
to confirm the outcomes.  
 
Step 1_Method 2  
Calibrate a stochastic model conditioned on an observed covariate associated with a 
change signal (e.g., temperature). While this approach is still in the research domain it is 
expected to have more statistical power to identify non-stationarity than the first method 
(provided a suitable covariate can be found).  
 
Second Step (High priority: Medium/Long term)  
If, after application of the first step, it is concluded that the recent past may not be 
statistically consistent with the full observed record and, more importantly, that differences 
are hydrologically significant, it will be necessary to revise the stochastic modelling 
approach described in the Methods Paper.  
 
A number of conceptually different approaches are available:  
Step 2_Approach 1  
Calibrate the stochastic model to the recent past record with the knowledge that 
parameter uncertainty will be elevated;  
Step 2_ Approach 2  
Adjust the observed record prior to the recent past so that it reproduces certain statistical 
features of the recent past and then calibrate the stochastic model to the full adjusted 
observed record;  
Step 2_ Approach 3  
Identify suitable change covariates and calibrate a conditional stochastic model.  
Each of these approaches has strengths and weakness. As there is limited experience 
with this issue it is expected that methods will evolve in the future. 

Recommendation 9.1: DPIE-Water work with the NARCliM developers and together 
begin the process of planning to incorporate NARCliM 1.5 into calculations. (High 
priority: Short term) 

The Panel was reconvened in December 2020 to consider DPIE-Water’s proposed approach 
to implement some of these recommendations for Southern Inland NSW and Greater 
Sydney regions.  

The Southern Inland NSW8 includes the whole southern catchment of the Murray Darling 
Basin, incorporating the following water sources: 

 
8 Note that the UoA draft report (Appendix A) refers to the Southern Basin and the southern region. The 
Department has also referred to the region as Southern Inland NSW and the Southern Connected Basin. 
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o Murrumbidgee Regulated River system wholly in NSW 
o the Upper Murrumbidgee River in NSW and ACT; 
o Murray-Lower Darling Regulated River system in NSW, Victoria and South 

Australia; 
o The Kiewa, Ovens, Broken, Goulburn, Campaspe and Loddon river systems 

wholly in Victoria 
o The Snowy Mountains Scheme in NSW and Victoria 

The Panel was provided with three documents for which expert opinion and advice was 
sought: 

• Draft report: Devanand, A., Leonard, M. and S. Westra (2020). Implications of Non-
stationarity for Stochastic Time Series Generation in the Southern Basins. University 
of Adelaide (draft report). (See overview of method/findings in Section 2.1; full report 
at Appendix 1) 

• Proposed methodology: Provision of stochastic climatic data for the Southern 
Basin representing historical, current and future climate conditions. Proposal by UoA 
to DPIE-Water, 28th August 2020. (Appendix 2 for detail) 

• Proposed methodology: Provide stochastic climatic data for the Greater Sydney 
Region representing historical, current and future climate conditions. Proposal by 
University of Newcastle to DPIE-Water, 27 November 2020. (Appendix 3 for detail) 

A meeting was held on 4 December to discuss approaches set out in the three documents 
for review, with two presentations provided to the Panel: 

● Professor Seth Westra (UoA) - Implications of Non-stationarity for Stochastic time 
series generation in the Southern Basins 

● Associate Professor Anthony Kiem (UoN) - Stochastic modelling of historical and 
future hydroclimatic risk for the Greater Sydney Water Strategy (GSWS) 

A follow up discussion occurred on 19 January 2021 that didn’t include the UoA and UoN 
teams. Both meetings included the water and climate modellers from DPIE. 

This advice reflects discussion at those meetings plus additional Panel email 
correspondence and discussions. 
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2 COMMENT ON EVIDENCE OF NON-STATIONARITY FOR 
SOUTHERN BASIN AND GREATER SYDNEY REGIONS 

2.1 COMMENTS ON NON-STATIONARITY IN SOUTHERN BASIN 
The Panel was asked to comment on the draft report by Anjana Devanand, Michael Leonard 
and Seth Westra from UoA, Implications of Non-stationarity for Stochastic Time Series 
Generation in the Southern Basins.  

The authors tested for presence of a non-stationarity signal of the historical climate data 
(rainfall, temperature, evapotranspiration) in the Southern Basin by a) assessing non-
stationarity of the historical record using selected sites in the Southern Basin to detect trends 
and b) split-sample testing of the stochastic model.9 This was contextualised through a 
literature review to understand past changes and future projections.  

Key findings, as articulated by the authors in the presentation to the Panel, include: 

• Temperature is non stationary 

• Cool season and annual rainfall totals are non-stationary 

• There are trends in other attributes of rainfall in the pilot analysis, some of which (e.g. 
short-term spring decline; extremes) are less consistent with general literature 

• Non-stationarity in evaporation is less well-established 

• The Millennium drought is a ‘high leverage’ event; the period used for calibration 
influences the statistics of the simulated stochastic data.10 

The authors noted caveats for the study results which are discussed in Chapter 5 of 
Appendix 1.  

  Drying signal in observed record 

The stochastic models used in water resource assessment typically assume stationarity. 
While there are different definitions of stationarity, key is that joint probability distributions of 
variables at different points in time do not depend on any reference point in time.  

When a stationary model is calibrated to an observed record, the implicit assumption is that 
the observed record is a realisation of a stationary process. If a stationary model is 
calibrated to an observed record that is not stationary, the sequences generated by the 
model will not be fully representative of the observed record. Detecting such mis-
specification requires the use of diagnostics that compare different periods of time. 
Diagnostics based on the whole record (such as moment statistics, marginal distributions, 
autocorrelations) average out time variation and are unlikely to detect the presence of non-
stationarity.  Suitable approaches include trend analysis over different epochs and split-
sample analysis. Failure to properly represent non-stationarity can have major implications 
for assessment of current and future drought risk.  

The UoA analysis in the draft report demonstrated that selected observed rainfall records in 
the Southern Basin experienced statistically significant change over time. Two techniques 
were used. One was based on trend analysis over different epochs. The other used split-

 
9 Split sample testing methodology used the following time periods:  
a) 1990 reference: 
1889 calibration to 1990 then validation to 2018 
1950 calibration to 1990 then validation to 2018 
b) drought reference: 
1889 calibration to 2010 then validation to 2018 
1950 calibration to 2010 then validation to 2018 
10 Westra, S, Devanand, A and M Leonard. Implications of Non-stationarity for Stochastic Time Series 
Generation in the Southern Basins. UoA. Presentation to Panel, 4 December 2020. 
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sample analysis which involved calibrating a stationary stochastic model to data prior to 
1990 and then testing the model using data independent of the calibration, from 1990 
onwards. Both the trend and split-sample tests suggest there has been a drying signal 
associated with seasonal rainfall.  

 Prior understanding of stationarity in Southeast Australia 

Panel members’ prior understanding of stationarity in Southeast Australia is that temperature 
is now non-stationary, rainfall in the southern half of the Murray-Darling Basin is non-
stationary and rainfall in the northern part of the basin cannot be shown to be non-stationary. 
The UoA draft report (Appendix 1) and the presentation by UoA to the Panel point to similar 
results. This analysis is broadly consistent with expectations from other relevant research.  

In short, the Panel’s assessment is that the approach used is sound and the 
outcomes revealed statistically significant non-stationarity in some, but not all, 
places. This analysis is consistent with expectations from other relevant research. 

 Minor suggested improvements to draft report 

The following relatively minor suggestions are provided to improve the report. 

2.1.3.1 Use of updated BOM temperature and rainfall trend data 

The BOM data used in the analysis by Devanand, Leonard and Westra for temperature and 
rainfall has since been updated. It is important to augment analysis of historical trends of 
temperature and rainfall data in Southeast Australia with analyses/trends using latest BOM 
data (see their website), as warming trends have been markedly revised upward. 

The Panel acknowledges this won’t change the major outcomes or conclusions around the 
non-stationarity signal. However, for completeness and rigour, and if the report may be used 
in an external context, the authors should address this. 

2.1.3.2 Statistical significance 

Stating that something is “statistically significant” or “not statistically significant” can be 
helpful, but it is typically better to also provide a number giving the likelihood of obtaining a 
trend as large or larger than observed, under the null hypothesis (e.g. provide estimated p-
values). See, for example, Table 1 in Power and Callaghan (2016).11 This also applies for 
field significance. 

2.1.3.3 Additional suggested reference for literature review 

The panel suggests the authors add a brief discussion of Rauniyar and Power (2020)12 in 
relation to observed trend and attribution of recent drying (in Victoria only). Rauniyar and 
Power (2020) estimates the contribution of anthropogenic forcing to drying in recent 
decades. It also makes use of information from climate models for coming decades. 
Estimates that ~80% of observed cool season drying since beginning of Millennium Drought 
in Victoria was due to natural, internal variability, albeit with high uncertainty. 

 
11 Power, S.B., and J. Callaghan (2016). The frequency of major flooding in coastal southeast Australia has 
significantly increased since the late 19th century. J. South. Hemis. Earth Sys. Sci., 66, 2-11. 10.1071/ES16002. 
12 Rauniyar, Surendra, and Scott B. Power (2020). The Impact of Anthropogenic Forcing and Natural Processes 
on Past, Present, and Future Rainfall over Victoria, Australia. J. Climate, 33, 807-8106, 10.1175/JCLI-D-19-
0759.1 

https://doi.org/10.1071/ES16002
https://doi.org/10.1175/JCLI-D-19-0759.1
https://doi.org/10.1175/JCLI-D-19-0759.1
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2.2 GREATER SYDNEY REGION – TEST FOR AND EVIDENCE 
OF NON-STATIONARITY 

 Proposed approach to testing for non-stationarity of rainfall, 
temperature and evapotranspiration 

There was no analysis presented by UoN on evidence of non-stationarity for the Greater 
Sydney catchments, as the project is at the proposal stage. The proposed approach put 
forward by UoN would follow that for the UoA Southern Basin analysis for testing for non-
stationarity in Greater Sydney locations: (i) trend analysis, break point analysis and (ii) split 
sample calibration/validation of stochastic models. 

As scales get smaller (e.g. the Sydney Basin) assessing stationarity becomes harder and is 
relatively more influenced by phenomenon such as East Coast Lows. The Panel noted that 
testing for non-stationarity in Greater Sydney is expected to be affirmative for temperature 
and unclear for rainfall. The Panel notes that testing for non-stationarity of events that drive 
rain such as East Coast Lows (ECLs) would be useful information if it could be achieved; 
however, the statistics of checking for non-stationarity on relatively infrequent events such as 
ECLs may be problematic, given that they are relatively infrequent events.  

The Panel recommends that testing for non-stationarity of temperature and rainfall is not 
undertaken as proposed at this time, as the Panel recommends that other activities identified 
as having a higher priority are conducted first, and that this additional exercise is then only 
undertaken if remaining time and resources allow.  

 Evidence of non-stationarity in streamflow in Sydney catchment 

Recent work by Kiem et al (2020)13 points to non-stationarity of streamflow in the Sydney 
catchment. Split sample testing offers evidence of change since 1990 in streamflow in the 
Sydney catchment.13 This observed change in streamflow may be driven more by warming 
(causing longer growing seasons and increased ET) than rainfall decline (see 2.4.2). These 
results support the conclusion that investigating non-stationarity in streamflow records 
deserves as much if not more priority than investigating rainfall records.  

Kiem et al. (2020) show that the observed annual streamflow records for Warragamba, 
Shoalhaven and Avon exhibit non-stationarity. Figure 1, taken from Kiem et al. (2020), 
shows a split-sample analysis for 1 to 4-year overlapping sum frequency distributions for 
Warragamba streamflow. The black circles represent observations from 1990 to 2018. The 
blue line presents the median sum for a 29-year period simulated by a stationary model 
calibrated to data from 1910 to 1989. The dashed red lines represent 5 and 95 sum 
percentiles. The p values shown on each plot are the probability that the stochastic model 
produces an overlapping cumulative streamflow total that is less than the observed total. The 
p values are all less than or equal to 0.001 which means the stationary stochastic model 
would have to generate, on average, one thousand 29-year sequences before a generated 
29-year sequence produced a total flow less than observed between 1990 and 2018. This is 
consistent with the findings for the southern basin, where the evidence suggests that natural 
variability (as simulated by a stationary stochastic model) alone cannot account for the 
annual (and seasonal) rainfall behaviour observed between 1990 and 2018. 

As above, the Panel is recommending that testing for non-stationarity for rainfall or 
temperature in Sydney is not undertaken at this time. However, the Greater Sydney region 
has long streamflow records dating back to 1910. Given there is published evidence of 
change in these records in the last 30 years and given the timing of the current Greater 
Sydney RWS, it is recommended that non-stationarity in the streamflow record be 

 
13 Kiem, A. S., Kuczera, G., Kozarovski, P., Zhang, L., & Willgoose, G. (2020). Stochastic generation of future 
hydroclimate using temperature as a climate change covariate. Water Resources Research. 57, 
10.1029/2020WR027331 
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investigated with an additional goal of understanding the causes. This will allow immediate 
assessment of current climate risk on Greater Sydney Region’s water supply. Focussing on 
streamflow avoids the need to deal with non-stationarity in rainfall, PET/ET and rainfall-
runoff.  

The UoN stochastic model works on seasonal timescales and disaggregates to shorter time 
scales using a non-parametric method. It is well suited for modelling streamflow. 

 

Figure 1: Results of split-sample analysis for 1 to 4-year overlapping sum frequency distributions for Warragamba streamflow 

2.3 ATTRIBUTION OF NON-STATIONARITY SIGNAL 
Given the results of the UoA study on the Southern Basin and the Warragamba study (Kiem 
et al 2020), as well as other observations in the literature, it is reasonable to conclude there 
has been a change signal in rainfall in the southern basin (and Greater Sydney region) in the 
last 30 years. The question then arises: will some uncertain fraction of this drying signal 
persist or intensify in response to further global warming? If the answer is yes, this will affect 
current (and long-term) assessment of drought security (which presently assumes a 
stationary climate) and, in the case of urban water supply, current drought contingency 
plans.  

The change signal in rainfall may be due to some manifestation of (stationary) multi-decadal 
variability that is yet to be understood or it may be a consequence of anthropogenic-induced 
climate change or some combination. Statistical models describe associations between 
random variables; causal attribution is not possible. Unravelling the causes of the change 
detected by statistical analysis will have to rely on climate science.  

Climate science has concluded that global heating is due to anthropogenic emissions and 
that this causes changes to large-scale atmospheric (and ocean) circulations. For example, 
the climate in the southern to mid-latitude regions of Australia is susceptible to, for example, 
the strengthening of Hadley cells and consequent shifts in the mid-latitude high-pressure 
ridge. Furthermore, climate models consistently project a drying trend in rainfall during the 
winter-spring period in the southern basin over the remainder of the 21st century (CSIRO and 
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BOM, 2015)14 and CMIP5 and CMIP6 models show drying over the southern basin via 
longer drought duration, and higher drought intensity (Ukkola et al., 2020).15 

It is worth noting there are other natural and anthropogenic causes of non-stationarity in 
water availability. Climatic conditions can impact on demand for water.16 For example, during 
hot weather, irrigators may pump more water for irrigation or likewise for other water users. 
When conditions are dry, additional dam release may be required. Land use can cause non-
stationarity of flows. Non-stationarity of water availability can also be due to vegetation 
effects. 

Research aimed at improving our understanding of the relative importance of anthropogenic 
and natural processes in driving observed changes, and the implications this has for future 
rainfall, is encouraged. 

2.4 NON-STATIONARITY AND ITS IMPACT ON PET, ET, 
CLIMATE DRIVERS 

 Potential evapotranspiration vs evapotranspiration 

The assessment of non-stationarity in potential evapotranspiration (PET) appears to have 
not been undertaken in this set of work. The Panel agrees with the challenge of assessing 
stationarity for PET. While it can and has been done, assessing non-stationarity in PET may 
not be a useful effort moving forward.  

The Panel notes that catchment yield won’t be well predicted unless it is recognised that 
PET is not going to capture how catchments respond to climate. Some panel members felt 
that PET should not be used in future work and may lead to fundamentally wrong future 
assessments of water security.  

The Panel in the April 2020 report argued in support of the need to move to actual 
evapotranspiration (ET) which is physically represented in future scenarios derived using 
climate models but is not always used in hydrological modelling (Recommendation 3.2 – 
April 2020 report). This leads to a fundamental separation of the physically consistent 
climate model projections with the uncoupled hydrological projections. To further explain, 
actual ET depends on climate forcing, plant response and availability of water from the soil. 
For example, in an aerodynamically rough environment (e.g. forest canopy) with adequate 
soil water, Penman-Monteith ET is approximated by product of canopy conductance (GC), 
leaf area index (LAI) and vapour pressure deficit (VPD). 

The Panel understands the rainfall runoff models used by DPIE Water do not incorporate 
vegetation responses as expressed by GC and LAI, which respond to climate forcing and 
environmental stress (such as soil water deficit). This could be a problem with the rainfall 
runoff models. 

The Panel recommends that DPIE not assume (or prescribe) changes in PET moving 
forward, but rather keep PET at levels reflecting the last 20 years. While PET will increase in 
the future, this will likely be an artifact of its formulation and actual ET will not change in 
ways consistent with PET. 

 
14 CSIRO and Bureau of Meteorology (2015), Climate Change in Australia Information for Australia’s Natural 
Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia 
15 Ukkola, A. M., De Kauwe, M. G, Roderick, M. L., Abramowitz, G., & Pitman, A. J. (2020). Robust future 
changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical 
Research Letters, 46, e2020GL087820. 10.1029/2020GL087820. 
16 For an analysis for Sydney on this topic see Barker, A., A.J. Pitman, J.E. Evans, F. Spaninks, L. 
Uthayakumaran, (2020), Drivers of future water demand in Sydney, Australia: examining the contribution from 
population and climate change, Journal of Water and Climate Change, accepted 22 May 2020, doi: 
10.2166/wcc.2020.230. While the impact of climate change was relatively small compared with the impact due to 
population growth, the climate change impact wasn’t zero. 
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This work needs to examine vegetation’s role in linking climate change with soil moisture 
and catchment yield. 

There is ongoing discussion about the shortfalls if using PET in some modelling. This issue 
will be looked at in the Community of Practice and in longer term research. 

 Analysis of changing vegetation’s effect on flow 

The issue of longer-term projections was discussed by the Panel in the context of work being 
undertaken by the BOM on national hydrological projections and streamflow modelling. 
There is a fundamental change occurring across NSW catchments - the probability that a 
heavy rainfall event falls on a drier catchment is increasing. This is because the warmer 
atmosphere and warmer soils allow vegetation to grow for more days a year and “grow” 
means more transpiration, which dries the soil profile. One can see this in the greening of 
the satellite record - and every increase in leaf area index reflects embedded carbon 
resulting in higher net evaporation. 

Therefore, irrespective of stationarity in the meteorology, whether or not rainfall is changing, 
the ability of a catchment to absorb its water is increasing and thereby reducing catchment 
yields. This may not have any effect on water storages that are filled by 1 in 3 year or 1 in 5-
year events, but those dependent on smaller events, this could have a large impact. 

Improving the modelling to account for these effects will require a longer-term focus and 
funding, which has not occurred to date in Australia. There may be an opportunity for NSW 
to take the lead on this issue.  

 Non-stationarity of climate drivers 

While there may be a non-stationarity signal in the current climate, an associated issue is 
potential non-stationarity in the climate drivers, and the teleconnections between these 
drivers and Australian temperature and rainfall, which may already be changing and may 
change further in the future (e.g. Power and Delage 201817; Delage and Power 202018). The 
Panel discussed this in section 2.2.4 in the April 2020 report. This section is reproduced 
below: 

However all regions in NSW will have contributions from multiple drivers and 
systems, so full explanations for climate’s impacts on rainfall and ET won’t be found 
in any single driver and it is inevitable that multiple interacting drivers could be 
involved (e,g, ENSO-IPO) in rainfall events and the replenishment of surface water 
bodies.  

In addition, there is uncertainty about whether and how climate change will influence 
climate drivers and their interactions. No matter how these major drivers may have 
acted historically, they may not act consistently in the future with a changing climate. 
Indeed, we do not know if they are stationary in the past record, as there is only a 
relatively small number (approximately 8) of IPO epochs in the measured records 
and more in the paleo-record.  

Therefore, considering both the historical record and future changes, there is a need 
to look at the effects of individual and combined (joint) drivers on rainfall. In relation 
to the RWS methodology, this could be particularly important for regions where 
multiple drivers could play important role (e.g. in cases where both IPO and ECL may 
play a major role in rainfall).  

 
17 Power, S. B., & Delage, F. P. D. (2018). El Niño–Southern Oscillation and Associated Climatic Conditions 
around the World during the Latter Half of the Twenty-First Century. Journal of Climate,31(15), 6189-6207. 
https://journals.ametsoc.org/view/journals/clim/31/15/jcli-d-18-0138.1.xml 
18 Delage, François & Power, Scott. (2020). The impact of global warming and the El Niño-Southern Oscillation 

on seasonal precipitation extremes in Australia. Climate Dynamics. 54. 10.1007/s00382-020-05235-0. 

https://journals.ametsoc.org/view/journals/clim/31/15/jcli-d-18-0138.1.xml


 

20 
 

The Panel believes work to improve stochastic series will be needed, including, but 
not restricted to, methods that use individual drivers, particularly for regions that may 
have a combination of dominant drivers. Indeed, for regions with multiple dominant 
drivers it may be better to explore methods that don't rely on specification of 
individual drivers, rather than add additional drivers into an existing method, with or 
without their possible nonlinear interactions. The exploration might find that using 
drivers is best way to go in future, but it might not.  

Overall, the Panel agrees that work should be undertaken in the near term on what 
approach to use to generate stochastic data sets where multiple drivers dominate, 
and for future iterations of the RWS, given that climate change may alter the impact 
of drivers (non-stationarity), we suggest future research put effort into other ways to 
generate the stochastic data sets.  

In the longer term, work with colleagues, such as the community of practice group to 
examine whether behaviours of climate drivers (e.g. IOD, IPO, ENSO, and SAM) into 
the future will remain statistically consistent with the past. Active reviews of the latest 
literature every few years would be prudent. 

This issue will need to be considered in the model set up. However, if climate drivers are 
added to a stochastic model, it increases the complexity. This is because a probability model 
of the climate drivers is required and a description of the interdependence with the variables 
of interest (e.g. rainfall, streamflow). The challenge is to show evidence that doing this 
provides statistically significant improvements to the rainfall/streamflow simulations. 

For example, DPIE-Water is using a rainfall/IPO stochastic model. The IPO model is treated 
crudely as an alternating renewal process (e.g. palaeo data showing long periods (70%) of 
IPO positive, 15% negative, 15% transition (uncertainty not known here)). Calibrating this 
model is problematic, as there is only a handful of IPO epochs in the instrumental record. 
Paleo data can increase this sample provided you trust the paleo reconstructions. The 
bigger problem is the small sample available to condition rainfall on IPO. Establishing that 
these distributions are different and stationary is a challenge. 

The Panel notes that Victorian DELWP touches on this issue in DELWP (2020).19 

The Climate Community of Practice, recommended in the April 2020 report, should address 
this topic. There is lack of consensus in the research community on the importance of 
climate drivers, with some seeing them as the pathway to predicting future climate and 
rainfall while others downplay their potential importance. The same is true for use of palaeo 
data, with some supportive that they provide robust reconstructions, while others are less 
supportive, in spite of journal articles to the contrary. The topics are complex and subject to 
ongoing research. But the issue of whether past correlations between rainfall and climate 
modes are stationary and whether there is any correlation between rainfall events that 
matter to water security and climate modes are vitally important topics and worthy of future 
study and consideration. 

The Panel recommends that DPIE should keep abreast of advances in the relevant climate 
driver/teleconnection research to ensure that approaches used reflect scientific consensus 
on non-stationarity of climate drivers. This may be addressed through the previously 
recommended Community of Practice. 

  

 
19 DELWP. Guidelines for Assessing the Impact of Climate Change on Water Availability in Victoria. Final, 
November 2020, Department of Environment, Land, Water and Planning, Victoria. 
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3 COMMENT ON APPLICATION OF NON-STATIONARITY TO 
STOCHASTIC MODELS 

Overall, the Panel supports proceeding with the two proposals for Southern Basin by UoA 
and Greater Sydney Region by UoN. The Panel recognises some of the issues raised here 
are complex and challenging to resolve. Some of the key issues are the subject of cutting 
edge, developing research, and strategies to quantify climate risk will require ongoing 
attention into the future and likely adjustment as understanding improves. This advice 
elaborates on the issues and suggestions to address them. The Panel acknowledges that 
some of these will require a longer timeframe to resolve.  

There was consensus that there is no definitive approach to account for non-stationarity in 
the observed record or future climate. The goal here, ultimately, is to estimate catchment 
yield which requires a series of steps which inherently involve a cascade of uncertainty. So, 
overall the Panel cannot assess whether the approaches being proposed are “right”, but 
rather, whether they are reasonable.  

Panel discussions were focused around the options for addressing issues, including non-
stationarity, in stochastic modelling, both benefits and shortcomings, and arriving at a 
strategy that makes best use of what is known and communicates the uncertainty. 

3.1 CHOOSING THE APPROACH/MODELS 

 Options to deal with non-stationarity in stationary stochastic 
modelling 

Stationary stochastic models are designed to simulate stationary climates. There are 
numerous ways to deal with non-stationarity in stochastic modelling – one approach is to 
amend a stationary stochastic model or otherwise use a non-stationary stochastic model 
(Section 3.1.3). The approach put forward here in DPIE-Water material is the former, 
applying NARCliM 1.5 scaling factors.  

The UoA proposal provided five potential approaches to deal with non-stationarity in 
stochastic model generation (Figure 2). The UoN proposal stated the approach will aim for 
consistency with the UoA approach noting the outcomes of the pending Panel advice. 
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Figure 2: Outline of options 

(Source: Westra presentation to panel 19 January) 

The approach to date used by DPIE has assumed climate stationarity. This approach, as 
well as the rationale and complexities for modifying to incorporate non-stationarity, are 
described by UoA.  

The stochastic method that has been used for the northern basins is based on the 
historical record and simulated to be conditional to the Interdecadal Pacific 
Oscillations (IPOs), with the implicit assumption that the climate is stationary over this 
period. These simulations are intended to capture variability in the baseline historical 
record, which was composed of (SILO infilled) climatic measurements from the 
period 1890 to 2018 as well as IPO distribution dwell times informed by paleoclimatic 
records. DPIE developed an additional methodology to amalgamate the variability 
from the stochastic replicates with climatic signals informed by RCMs. This method 
applies NARCliM based scaling factors to the stochastic model outputs.  

There are a number of trade-offs associated with modifying this methodology to 
incorporate climate non-stationarity, balancing the complexity of the climate signal, 
the strength of various non-stationarity elements as compared to the underlying 
variability, and the variety of methods that may be available to explicitly 
accommodate known trends. Here we detail a range of options available to account 
for the presence of non-stationarity in stochastics time series generation. The options 
vary in complexity.20 

The trades-offs to each option presented by UoA are noted in Table 2.  

  

 
20 Devanand, A., Leonard, M. and S. Westra (2020). Implications of Non-stationarity for Stochastic 
Time Series Generation in the Southern Basins. University of Adelaide (draft report), pg. 37. 
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Table 1: Trade-offs and application of five options outlined by UoA to account for non-stationarity 

(Source: Westra presentation to panel 19 January) 

 

 Comment on Option 3 – historical hybrid baseline 

Overall, the Panel suggested a precautionary approach is taken in that if there is an error, it 
is better to over-estimate risk of drying than under-estimate it. The Panel is also supportive 
of using multiple ‘storylines’ to test different scenarios. 

Panel consensus is that there is no definitive approach to account for non-stationarity in the 
observed record or future climate.  

The Panel recommends Option 3 – hybrid-historical baseline – as a worthwhile option for 
both the UoA and UoN work. This uses a stationary stochastic model with a representative 
stationary climate record. There are two possibilities: fit to baseline record (which is 
assumed to be sufficiently short to be near stationary) or adjust pre-baseline record to match 
certain statistics in the baseline record (as done by Melbourne Water) and then fit to longer 
record. 

Some Panel members have concerns about the ability of the baseline approach to 
adequately describe current climate risk. Hence the Panel supports a multi-pronged 
approach, particularly where approaches have different conceptual foundations.  

The Panel noted that split sample tests have confirmed recent non-stationarity in the 
Southern Basin rainfall as well as Sydney streamflow records. To represent this recent non-
stationarity the baseline record needs to be short, otherwise if too long, the change will be 
averaged out. However, a short baseline comes at the price of sampling uncertainty or noise 
regarding what is the actual climate representing the present. As a result, there is the risk 
that the baseline scaling is unrepresentative of the current climate. 

The other four options from 3.1.1. were deliberated, with the Panel noting: 

• Option 1 (entire record) risks providing an overly optimistic assessment of current 
climate risk and was not a viable option if there is a conclusion of non-stationarity for 
a particular region. As the Panel was comfortable with the UoA conclusions around 
non-stationarity in the Southern Basin, this option was excluded for that region. It is 
also expected that the Sydney region has experienced a non-stationary temperature 
signal and also for streamflow. 

• Option 2 (historical baseline) was not the preferred option. The question arose, if 
NARCliM 1.5 is applied, what would this mean? 
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• Option 4 (inverse method) was not viable in the available timeline. 

• Option 5 (weather typing) was also not viable in the available timeline, although the 
Panel noted that it has merits for the Greater Sydney catchment (discussed in 
section 4.1.1).  

 Another option - non-stationary stochastic model 

A sixth option was noted at the meeting on 4 December 2020, which is to condition the 
model parameters on external covariates, such as time or temperature. This option was not 
discussed in detail in the Panel meetings. However, recent work on this topic has been 
published by Kiem et al (2020)21 and is described briefly here. 

A non-stationary stochastic model can be implemented by conditioning its parameters on an 
exogenous variable which is associated with the change signal, both past and future – the 
exogeneous variable could be time itself or some climate-related variable. Such a model 
avoids the need to adjust observed data and the definition of reference periods. However, it 
requires identification of a climate variable that is meaningfully associated with the climate 
change signal, has long and reliable records and is estimated with reasonable skill by 
climate models.  

There is limited literature using this approach and little practical experience. However, the 
recent work of Kiem et al. (2020) is briefly mentioned because it has been applied to the 
Sydney catchments with satisfactory results – for instance, the split sample results shown in 
Figure 1 for a stationary model are significantly improved with p values increasing from 
<0.001 to ~0.13. One immediate implication is that the model can represent current climate 
risk.  

The Kiem et al. (2020) approach uses a simple generalisation of a long-established 
stationary stochastic model that is applied at seasonal or annual time scales. It uses 
maximum temperature as the exogenous variable. Although there are significant 
homogeneity issues with long-term maximum temperature records, stable and useful 
associations can be found in some cases. In cases where the association survives 
diagnostic scrutiny (in the form of multi-block split-sample analysis), it offers an additional 
line of evidence to the approach based on stationary models. 

In a non-stationary stochastic model the same principles can be used as with the stationary 
stochastic models to generate different probability distributions that describe the uncertainty 
in the way the non-stationary process evolves over time. In that regard the intent to describe 
uncertainty in climate is similar to the baseline approach. The big difference is that the 
uncertainty is data-driven, which is both a strength and liability. This uncertainty is 
straightforward to evaluate and is illustrated in Kiem et al (2020). 

For UoN’s proposed approach in the Greater Sydney region, use of a nonstationary 
stochastic model approach is a worthwhile option. UoN is already capable of applying such a 
model to streamflow in Sydney region. It is recommended UoN’s remit be extended to 
applying this approach and comparing it with the baseline approach. 

 Choice of NARCliM 1.5 

As described above, there is a range of approaches that could be used to incorporate non-
stationarity into a stochastic data model. One set of approaches uses climate models to 
scale historical stochastic data and future stochastic generated data for a location or region. 
In some cases, global climate models (GCMs) have been used directly (e.g. the DELWP 
modelling for Victoria) to reflect current and future climate. The Panel members had mixed 
views on using GCMs directly for local modelling.  

 
21 Kiem, A. S., Kuczera, G., Kozarovski, P., Zhang, L., & Willgoose, G. (2020). Stochastic generation of future 
hydroclimate using temperature as a climate change covariate. Water Resources Research,57, 
10.1029/2020WR027331 

https://doi.org/10.1029/2020WR027331
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In other cases, where regionally downscaled climate modelling is available these can be 
used to reflect recent or future climate change, in NSW’s case, by applying NARCliM-derived 
scaling factors to stochastic simulations. 

In NSW, with the availability of NARCliM that covers the whole state and the Murray Darling 
Basin, a library of downscaled models is available. NARCliM is not a single model, but rather 
an ensemble that includes alternative representations of some physical processes, as 
described further in the Panel’s April 2020 report. NARCliM is currently going through a set 
of updates, with NARCliM 1.5 now available and NARCliM 2.0 underway (planned 
completion 2022). 

Certain characteristics of NARCliM 1.5 mean that it is preferable to use in the current project 
on non-stationarity in stochastic models compared with its predecessor, referred to as 
NARCliM 1.0. Using NARCliM 1.0 in this project is possible, but it has a shorter baseline 
simulation. However, there may be useful information in NARCliM 1.0 if using a pooled 
approach (i.e. combining all modelled years from NARCliM 1.0 and NARCliM 1.5), adding 
additional information to the more recent NARCliM 1.5. A comparison of the two versions is 
in Table 3. 

The attributes of NARCliM 1.5 that are of particular relevance for this project include the 

following:  

• NARCliM 1.5 provides 150-year simulation of physically plausible climate (1950-

2100). 

• NARCliM 1.5 reflects large scale drivers of rainfall in the Southern Basin (including 

expansion of tropics, shift of storm tracks). It gives a better view of the low 

rainfall/drought risk over NARCliM 1.0, as the CMIP5 models perform better than 

CMIP3 models, and NARCliM 1.5 samples a ‘hotter’ future change space that 

NARCliM 1.0 doesn’t.  

• In setting up NARCliM, climate model drivers were intentionally chosen to be 

relatively wet, relatively dry and medium; an approach that lead the downscaling 

exercise to ‘bookend’ the Coupled Model Intercomparison Project (CMIP).  

• For NARCliM 1.5, two configurations of the Weather Research and Forecasting 

Models (WRF) (version 3.6.0.5) regional climate model (RCM) were used to 

downscale projections from three CMIP5 global climate models (GCMs), with two 

future emissions scenarios (RCP4.5 and RCP8.5). In effect, for each 20 years of time 

generated using NARCliM1.5, there is 240 years’ worth of data for physically-

plausible future climate. For the 20-year periods also modelled for NARCliM 1.0 

(2020-2040, 2060-2080), NARCliM now provides 480 years of physically-plausible 

future climate. 

• NARCliM isn’t one model, but rather an ensemble of models. Pooling all NARCliM 

models for one 20-year time slice equates to 480 years of model data representative 

of the 20-year period. Considering the NARCliM ensemble as a whole, NARCliM has 

dynamically downscaled approximately 1,500 years of future climate data. The 

question is how best to mine and use that data to align with the stochastic model. If 

focusing on a 20-year period from 2060 – 2080, there are 24 physically plausible 

replications of that 20-year period – plus 100 years of observational data. 

• Using WRF as the only downscaling model could introduce shared biases, so to 

overcome this NARCliM developers used three different convection and three 

different planetary boundary layer (PBL) parameterisations to examine dependencies 

but using the same dynamical core. 

• For NARCliM 1.5 the chosen models for downscaling were selected on the basis of 

being independent using the Bishop and Abramowitz method. 

• For historical climate data using NARCliM, if the whole period from 1950 – 2009 is 

considered, then there are three models (based on the CMIP5 historical simulations), 

two for the period from 1980 – 2005 (based on ERA-Interim reanalysis), and three for 
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the period 1950-2009 (based on NCEP/NCAR reanalysis), providing eight historical 

simulations in total. 

• All data provided by NARCliM 1.5 is stored as unadjusted, but for some parameters 

bias corrected data is also available. Note that while bias correction can improve 

model performance compared to current observed data, the bias correction process 

can also introduce its own uncertainties. 

• NARCliM1.5 is uploaded and available to be accessed by UoA and UoN on the 

National Computational Infrastructure (NCI). 

 
Table 2: Comparison of features of NARCliM 1.0 and 1.5 

 NARCliM 1.0 NARCliM 1.5 

Models 12 6 

Model timeframes 20 years 
1990-2009, 2020-2039, 2060-2079 (& 1950-
2009 NCEP-forced simulations) 

150 years 
1950-2100 (& 1981-2010 
ERA-Interim forced 
simulations) 

Grid 50 km (CORDEX-Australasia) & 10 km 
(NARCliM) 
 

50 km (CORDEX-
Australasia) & 10 km 
(NARCliM) 

Timestep 3-hourly (all vars), hourly (precip, 2m temp, 
RH, wind) 

3-hourly (all vars) 
 

Variables 100+ (20 post-processed) 120+ (25 post-processed: 
1-hr, 3-hr, 6-hr, daily, 
monthly, season) 

GCMs 4 CMIP3 3 CMIP5 

Regional models 3 regional models per GCM (WRF3.3) 2 per GCM (WRF3.6.0.5) 

Future emissions 
scenario(s) 

SRES A2 RCP4.5 & RCP8.5 

Example uses Regional climate snapshots, near versus far 
future climate analyses for temperature, 
heat, snow, fire, rainfall, etc. 

Strategic planning (e.g. State Infrastructure 
Strategy, Sydney Region Plan). Transport for 
NSW Asset Management Authority – 
guidelines for rolling stock. Asset risk 
management (XDi). NSW Common Planning 
Assumptions. NSW NPW adaptation 
strategy, etc. 

In addition to previous 
iteration: climate 
extremes, thresholds for 
impacts, compare with 
non-climate datasets. 

 Overview of Victorian Government work on climate modelling for 
water planning, including non-stationarity timeframe post-1997 

In November 2020, the Victorian Department of Environment, Land, Water and Planning 
(DELWP) released guidelines to assist Victorian Water Corporations and agencies to 
incorporate climate change into planning for water supply sustainability in Victorian urban 
and rural water. The Guidelines set out an approach for applying climate change scenarios 
for temperature, PET, rainfall, runoff and groundwater (GW) recharge and include changes 
to climate variability associated with climate change.  

A brief summary list of the key DELWP Guideline approaches is as follows: 
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1. A post-1975 historical climate baseline period is used, as well as a post-1997 
historical reference period, from which to generate a step climate change scenario, to 
capture non-stationarity. 

2. Extending the post-1975 and post-1997 periods to incorporate a broader range of 
natural climate variability using either scaling techniques or stochastic data 
generation. 

3. Use of additional scenarios to represent low, medium and high current and future 
projected climate and streamflow (in addition to the post-1997 scenario). Scenarios 
are derived using average annual climate change projections applied to the post-
1975 period for temperature, PET, rainfall and runoff under the RCP8.5 scenario for 
the years 2040 and 2065. The low, medium and high represent the 10th, 50th and 90th 
percentile from the 42 available GCMs. 

4. Linear interpolation of low, medium and high projections between 1995, 2040 and 
2065, and extrapolation of GCM projections up to 2075. 

5. Post-1997 step change climate scenario (in addition to low, medium and high) to 
represent current and future climate and streamflow – projecting the post-1997 
reference period independent of climate modelling. The scenario assumes the dry 
conditions post-1997 are a permanent step-change in climate compared to pre-1997.  

6. Adjustments to peak daily and sub-daily rainfall and run-off and changes to average 
annual rainfall and run-off to project any projected changes in rainfall intensity under 
global warming. 

7. Applications of climate change scenarios to estimate change in water use demand, 
GW recharge, additional changes to run-off due to changes in snow cover, changes 
in water supply availability, such as due to changes in yield, reliability etc. 

8. Identification of near-term risks. 
9. Optional application of additional information and techniques including using also 

RCP4.5, optional use of regional downscaled projections (from the Victorian Climate 
Projections 2019), and optional use of additional climate change impact assessment 
techniques such as sensitivity testing. 22 

The Victorian DELWP guidelines will be updated after the CMIP6 climate modelling is 
published in 2022.  

Lessons for NSW from the Victorian approach include the following observations: 

• Detection of non-stationarity – Given the overall comfort of the Panel that the work of the 
UoA team in the Southern Basin indicates that there is evidence of non-stationarity in the 
data, the Panel then considered whether it is feasible to determine the relative 
importance of anthropogenic contributors to non-stationarity versus natural contributors. 
It is noted that in the Victorian DELWP work, the observed “externally-forced” component 
(which includes the important anthropogenic component) was approximately 20% of the 
observed change since the Millennium Drought, but with very high uncertainty (for 
example, interquartile range is 40% to -4%). As there is a large degree of uncertainty 
with this estimate, an approach is required to manage uncertainty. The approach used 
by DELWP was to use a range of projections – 10%, mean (i.e. 50%), 90%, derived from 
the GCM runs. 

• Model set-up and scaling factors – The DELWP approach used as a baseline from 1975 
onward to near-present. It used stochastic modelling of that period and applied scaling 
factors based on global, coupled GCM outputs to stochastic variability so the stochastic 
data was run once, but three sets of scaling factors were then applied (10%, median (i.e. 
50%), 90%) over all the state at the catchment level, giving three scenarios. A fourth 
scenario was obtained by using data from 1997 onwards only, independent of climate 
model output. The Panel thought that reflecting uncertainty through the selection of low, 

 
22DELWP. Guidelines for Assessing the Impact of Climate Change on Water Availability in Victoria. November 
2020, Department of Environment, Land, Water and Planning, Victoria. 
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medium and high climate change scenarios was prudent, and noted this was similar to 
the approach used in NARCliM. Having a baseline for Southern Inland NSW that aligns 
with that for Victoria could have benefits for the ability to compare the two regions. 

• Model performance and extremes – The approach of fitting the model to the entire record 
and then fitting to a post-change period (for Victoria it was 1997) is a good one. It 
provides an idea of how climate has changed – seen in model parameters – allowing 
comparisons of frequency and length of dry spells. However, the issue of dam filling 
events requires a forensic look at the records. Some parts of NSW rely on these events, 
so if NSW had that insight it might give a better idea of model performance. If more 
metrics are brought in, then it will be possible to determine whether models were 
performing well or not. Having the metrics that impact water availability would give a 
clearer picture of how well the model performs for water security and this exercise would 
help identify the relative performance of different models. The DELWP work dealt with 
extreme drought and rainfall by undertaking extreme event sampling (see DELWP 
report). Refer to section 3.3 for more on this topic. 

• Regional downscaled models versus GCMs – There are attributes from this DELWP 
approach that work well, but there are some caveats for NSW. First, the GCM models 
used have very coarse resolution and do not resolve what happens at the catchment 
level. Furthermore, the evaluation of extreme events over NSW is limited.  

o There are benefits to adopting a systematic downscaling approach, which is what 
NARCliM has done. NARCliM 1.5 can be used for drivers of variability. How well 
downscaling products reflect rainfall or drought events is an important question 
for water security. They will be part of the answer but not a silver bullet.  

o There is concern by some Panel members of the use of the 10th, 50th and 90th 
percentiles from the 42 available climate models. If these 42 models were 
independent then it might be ok, but they are not. This means that the percentiles 
are merely the statistical artefacts of a biased sample. There is no “reason” why 
these 42 models exist - it is an “ensemble of opportunity” and not an ensemble 
designed to sample uncertainty.23 So, NSW should not follow this method without 
first undertaking a formal assessment of independence and only using those 
GCMs that are independent. 

o For NSW, NARCliM has worked through these issues. NARCliM tested for model 
independence when selecting those to downscale. NARCliM also picked, in 
effect, a wet, dry and intermediate climate model to downscale. Unless it is 
possible to demonstrate a priori that the NARCliM data are biased it is strongly 
recommended not expanding the ensemble without very great thought – adding 
more models would increase the range of projections, but not necessarily 
usefully. 

o It should be noted, however, that model dependence might be less of an issue for 
rainfall projections (e.g., Power et al. 2012) and that some, but not all, Panel 
members saw value in augmenting projection information (e.g., scaling factors) 
from NARCliM, with information from the global GCMs, using a similar approach 
to that adopted by DELWP.24 

 
23 Model co-dependence is an issue with GCMs. Power et al. (2012) introduced the concept of “multi-family mean 
change” (see e.g. Fig. 11 in the 2012 paper) as a way of addressing model dependence. As there aren’t many 
families, in order to reflect model uncertainty in projections, one might have to resort to something ad hoc like e.g. 
using largest and smallest, or 2nd highest and 2nd smallest.  

Using e.g. 10th percentile of CMIP5 ensemble is likely a biased or at least inaccurate estimate of 10th percentile of 
multi-family ensemble. It would be interesting to see what scaling factors are for each family and would seem to 
be better to use this distribution to estimate uncertainty in scaling factors. But others might argue that it might not 
be a major issue (especially for rainfall projections – see Power et al. 2012) and the approach taken is adequate, 
given other uncertainties. It is in fact the approach taken by IPCC (2013). 

24 Note there are other ways of testing for and dealing with model dependence. See, for example: 
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 Storyline approach 

The Panel was supportive of a conservative approach using ‘multiple lines of evidence’, as 
well as a ‘storyline’ approach, where consideration is given to the whole system and how it 
interacts (e.g. urban water supply vs irrigation valley). By developing a conceptual storyline 
for that catchment, components of the model can be designed and applied to reflect the 
conceptual understanding of the system. 

A storyline would be informed by the characteristics of valleys such as their location (coastal 
vs inland), dependent water users (e.g. urban vs irrigation; large or small dependent), 
regulated vs unregulated waterways, connectivity and role of groundwater resources, 
agricultural, forestry or irrigation types, etc.  

The complexity of choosing the “best” design highlights the value of the storyline approach, 
informed by NARCliM, and informed by CMIP6 models, as appropriate. Among those 
storylines should, without question, be a strong drying trend in the Southern Basin slowly 
expanding northward into the Northern Basin. For the Sydney Basin, the ‘best’ storyline is to 
explore sensitivity to a range of East Coast Lows as proposed in earlier analyses and 
proposed by Kiem based on earlier work. 

This approach links to the discussion in section 3.3.2 about what generates streamflow and 
dam recharge. Metrics for the model should be defined around ‘what matters’. 

3.2 MODEL SET UP: VALIDATION, SIGNAL TO NOISE, 
BASELINE, LIMITING CASES, SCALING 

 Validation of NARCliM model outputs to statistics of hydrological 
importance 

From a stochastic modelling perspective, the baseline approach remains problematic, as an 
issue with the proposed option 3 is how representative of past records are NARCliM 
baseline simulations (unforced by historical observations)? Before this approach is 
undertaken, it needs to be ascertained how well NARCliM 1.5 historical runs capture the 
statistics of variability in rainfall, of relevance to streamflow, over the regions of interest in the 
Southern Basin and Greater Sydney. This should be checked.  

The degree to which NARCliM 1.5 can be used will be partly dependent on how well the 
simulations capture the historical period in a statistical sense. They will not likely match 
observations in terms of the timing of variability, but they might capture the statistics of 
variability and any change due to increased CO2.  

This is important because, as the Panel was advised, the change factors will be derived from 
NARCliM simulations of historic baseline and future epochs. 

To understand this question, it would be prudent for the UoA team to analyse the NARCliM 
time series (using trend analysis/split sample analysis) to compare against the historical 
record (rainfall/streamflow), comparing key measurement statistics, trends and key 
variables. This could be, for example, an assessment of the probability of the Millennium 
Drought under alternative stochastic replicates (calculated using different baseline periods). 

 
• Abramowitz, G. and Bishop, C.H. (2014). Climate Model Dependence and the Ensemble Dependence 

Transformation of CMIP Projections, J. Climate, 28, 2332-2348, doi: 10.1175/JCLI-D-14-00364.1 

• Bishop, C.H. and Abramowitz, G. (2013). Climate model dependence and the replicate Earth Paradigm, 
Climate Dynamics, 41, 885-900, doi:10.1007/s00382-012-1610-y 

• Power, S.B., F. Delage, R. Colman, and A. Moise (2012). Consensus of 21st century rainfall projections in 
climate models more widespread than previously thought. J. Climate, 25, 3792-3809, DOI: 10.1175/JCLI-D-
11-00354.1. 
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The selection of the specific regions and the key measurements selected for comparison can 
be informed through process of ‘storyline’ development. 

Of importance is whether the simulations are consistent with observed statistics and trends 
that affect storage behaviour. Persistence in time and space would be an important attribute. 
It is not “consecutive dry/wet days” or “RX1” [the wettest day of the year] in all catchments. 
Sometimes it will be the event that occurs once every three years, or it will be some 
sequence of wet days that are not consecutive. Two aims of this are to identify how reliable 
and useful NARCliM is, as a due diligence assessment, and also to define benchmarks for 
NARCliM in the future – informing the value of NARCliM for specific purposes.  

Key to this, and more generally, is for the streamflow modellers to inform the climate 
modellers of the characteristics of events that matter to them. This could be different for 
different catchments, depending on their location (coastal vs inland), dependent water users 
(e.g. urban vs irrigation), regulated vs unregulated.  

Testing the NARCliM outputs to the statistics of specific catchments provides an indicator for 
the confidence that the climate variability signal has been captured and can help recommend 
the distribution of possibilities for scaling factors from NARCliM, providing clarity on what 
parameters would be suitable for modelling such as rainfall, temperature, soil moisture, etc. 

However, there may be a question about the ability of climate models to capture more 
extreme events which are important for water security. Regional Climate Models (RCMs) are 
useful but may not be a silver bullet for this issue. A particular question remains about 
whether another or an additional method would need to be considered for drought and 
extreme rainfall, including East Coast Low dam-filling events? 

In relation to extreme events and validation of the NARCliM model to these events, the 
Panel recommends that the developers of NARCliM work with hydrology and hydraulic 
modelers to identify some key metrics that could be used to validate NARCliM against and to 
give confidence and clarity on this question. NARCliM developers can then build these 
metrics into the NARCliM data flow, to build in some aspect of hydrological assessment and 
validation into the project’s post data processing. Relevant metrics may be regionally-
specific, or an array of metrics may be developed to choose from, with the methodology to 
apply these techniques documented. This task would be challenging, but worthwhile. 
Informing the NARCliM user community about which metrics to refer to for a particular 
catchment and what the scale and range of the metrics should be, for the data output to be 
useful (e.g. could be variability in rainfall), would be interesting to know what that is for a set 
of catchments and judge accordingly. 

The NARCliM 1.5/2.0 Technical Reference Group, in which DPIE Water participates, may be 
the suitable mechanism for this work to be undertaken. It will be important for the metrics to 
be documented, agreed and peer reviewed. 

The Panel notes that our ability to accurately know long-term basic statistics of crucial 
hydrological variables is very limited due to the brevity of historical records.  

The Panel acknowledges that the recommended work requires a longer-term effort and 
could take 12-18 months to determine and develop the methodology. There is likely to be a 
suite of candidate metrics that work could commence on. The approach to choosing / 
evaluating metrics would require guidance from experts and stakeholders in the hydrological 
community. It would be trivial to add a dozen or fewer metrics to the coding, as coding for a 
couple of hundred metrics occurs now. The Panel is advised that DPIE Water has started 
some work on this, and an evolution of that would be required.  
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 Signal to noise ratio and sampling uncertainty 

A stationary model is fundamentally incapable of quantifying the relative contribution of 
natural variability and climate change to an observed change. A climate model (such as 
NARCliM), on the other hand, is capable in principle of such quantification.  

The ideal way to accomplish such a separation would be to run many ensembles (or 
replicates) of the climate model over the same historical period with both natural and 
anthropogenic forcing, and then conduct two additional sets of runs in which only 
anthropogenic and then only natural forcing is applied. The historical record could then be 
detrended and used to calibrate a reference stationary stochastic model.  

The proposed approach using NARCliM relies on identifying a reference (or baseline) period 
and then providing some mechanism for comparing future climate periods against the 
baseline. The stochastic model could be calibrated to the baseline historical period. 
Hydroclimate sequences generated for the baseline period could then be adjusted in a 
manner that captures the changes in key statistics between NARCliM simulations of the 
reference and future periods.  

The issue of signal to noise ratio is very important to this and confidence in this approach will 
largely depend on the ability to manage the signal-noise ratio. The baseline period chosen 
(next section) will affect the signal to noise ratio. 

If the rainfall response to anthropogenic forcing is regarded as the signal and internally 
generated rainfall variability is regarded as the noise, then the ratio is smaller for coming 
twenty years than it is later in 21st century under e.g. RCP8.5 (as the climate change signal 
increases). Clearly advice for the 21st century needs to factor in what natural climate 
variability might do about these projected changes. This is evident in Rauniyar and Power 
(2020).25  

Changes in key statistics between NARCliM simulations of the reference and future periods 
will be affected by both the underlying change signal and sampling error. How big does the 
change signal have to be in order to “break through” the sampling noise? To put this 
question in perspective, it is worth noting that the annual average inflow into Warragamba 
reservoir is only known within ±20% with 95% confidence even though there are over 100 
years of records. So how much useful information about change is conveyed by NARCliM 
simulations of the reference and future periods?  

Given high natural variability, any statistic used to derive change factors to scale 
stochastically generated data may be subject to considerable sampling uncertainty (which 
decreases proportionately to the square root of record length). The problem is that the 
climate change signal implicit in the change factors may be masked by sampling variability. It 
is prudent to make an effort to quantify this and use it to inform decision making and 
selection of the baseline period. 

 Choosing the baseline length and starting year 

Because the approach is to calibrate stationary stochastic models, the data used needs to 
be adjusted so it represents a stationary snapshot in time. Choosing a baseline starting point 
is complex. 

One of the many problems is landing on an appropriate baseline when the baseline may 
already be changing. The 'change' is more likely to be a trend of some kind rather than one 
or more sizeable break points at specific instances in time. As already noted, the 'change' 

 
25 Rauniyar, Surendra, and Scott B. Power (2020). The Impact of Anthropogenic Forcing and Natural Processes 
on Past, Present, and Future Rainfall over Victoria, Australia. J. Climate, 33, 807-8106, 10.1175/JCLI-D-19-
0759.1 

 

https://doi.org/10.1175/JCLI-D-19-0759.1
https://doi.org/10.1175/JCLI-D-19-0759.1


 

32 
 

may be small relative to natural variability, but the direct and indirect impacts may be more 
noticeable. 

The chosen baseline can either be short for calibration or a longer adjusted record (adjusting 
pre-baseline data to be consistent with baseline data, as done by Melbourne Water).26 There 
are trade-offs with each of these options. 

The longer the period, the more precise the calibration and the less sampling error in 
calibration and in statistics used to compute change factors. However, the longer the period, 
the stronger the change signal; and the historical baseline may have significant non-
stationarity. 

The Panel deliberated changing the baseline. One option was a longer baseline of 1950 – 
2005, which would err on the wet side and likely result in overestimation of rainfall. Another 
option was to choose a shorter baseline to post 1997, which may be too conservative (dry) 
to somewhere in between, noting it’s best to err on the dry side. The assessment of post 
1997 as too dry was debated by Panel members, as there is no straightforward way to 
assess whether post-1997 is too dry, too wet or representative.  

In the southern basin there is limited evidence to suggest that using post 1997 is “overly 
pessimistic”. Current ability to quantify the relative importance of anthropogenic and natural 
processes to observed drying records or recent multidecadal changes in Australia is limited, 
which further complicates the ability of current science to estimate future rainfall change. 
There is evidence the drying signal is related to large-scale drivers including the expansion 
of the tropics associated with global warming. It nevertheless seems prudently cautious to 
assume that some fraction of the observed drying will persist and possibly intensify into the 
future and is therefore not ‘overly pessimistic’. The northern basin is not drying to the same 
degree and given the lack of evidence for non-stationarity one could choose a longer 
baseline.  

Victorian and Western Australian water corporations adjusted their pre-1997 flow data to 
reflect key statistics of post-1997 using a ‘pessimistic view’ (Melbourne Water) as the 
Millennium Drought forms part of that signal, which in part reflects natural variability, so 
would calibrate to a baseline that likely reflects both a change signal and some element of 
natural variability.  

Victoria DELWP chose 1975 as baseline starting point, with some Panelists noting merit in 
NSW being consistent with the DELWP approach, particularly for the Southern Basin 
enabling ease of comparison across the border. On the other hand, some Panelists were 
uncomfortable with using 1975 as a starting point, as there is a significant change signal 
over that period. Until the trade-offs are better understood, the Panel cannot recommend a 
specific baseline period. The Panel overall suggested a precautionary approach in that if we 
make an error it is better to over-estimate risk of drying than under-estimate it. 

The rolling evaluation approach (Appendix 4) (or something similar) might provide insight 
into the temporal stability of simulated streamflow and hence changes/trends in 
hydroclimatic regime. There is no guarantee that any such change will occur simultaneously 
across the regions or at the same rate. 

 Estimating upper and lower limiting cases of climate risk on water 
security 

The current approach develops one stochastic single realisation (single-best method) to 
enable probabilities to be estimated. Probabilities are conditional on assumptions. A 
scenario-based approach would provide a different decision-making route – providing upper 

 
26 DELWP.  Guidelines for Assessing the Impact of Climate Change on Water Availability in Victoria. Final, 
November 2020, Department of Environment, Land, Water and Planning, Victoria. 
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and lower cases to stress test the system. The simplest approach to calibrate to a climate 
change signal relies on bounding. 

As it is not complex to undertake, the Panel suggests upper and lower cases are estimated 
as a ‘reality’ check on other approaches. Note this is the approach used by NARCliM. 

Note this approach will apply to temperature and rainfall, but not drought or extreme dam 
filling events (e.g. ECLs). 

Lower limiting case 

Calibrating a stationary stochastic model to the full observed record (1910 – 2020) without 
adjustment ignores the drying change signal and thus will provide an underestimate of 
current drought risk. 

Upper limiting case 

The upper bound on current drought risk can be estimated in two ways:  

1) Calibrating to the recent past record, from 1990 - 2020. While this will capture the 
statistics of the last 30 years, the stochastic model will be sensitive to sampling 
variability. A caveat is that this approach may not apply to all regions and will depend 
upon the relative importance (and sign) of natural and anthropogenic processes and 
what is expected to happen. What happens, for example, in a region where rainfall 
increased since 1990 but projected change is drying?  

2) Calibrating to the full observed record with constraint on selected statistics. 
Melbourne Water have adopted this approach adjusting pre-1997 records to match 
post-1997 quantiles. UoA’s proposed inverse method is more flexible in that it gives 
more freedom in specifying the constraint; however, there is insufficient time to 
develop and evaluate this method and identify what are the most appropriate 
constraints.  

If emphasis is placed on reproducing post-1990 statistics, which are affected by the 
Millennium Drought, it is likely that the overestimation of current drought risk may be quite 
severe.  

While the upper and lower case approach is intuitive, it could be of limited practical value 
because the range it produces on simulated climate risk may be too wide. However, as the 
approach is straightforward and uncontroversial, it should be undertaken if only to provide a 
check on other approaches.  

 Use NARCliM to scale the stochastic data  

In addition to estimating the bounds described above, the panel suggests using downscaled 
data available to NSW from NARCliM 1.5 to estimate scaling factors.  

The teams will need to look at NARCliM 1.5 first before deciding on seasonal or quantile 
scaling. 

Sampling the NARCliM 1.5 data runs using different 20-30 year blocks will provide a range 
of scaling factors which can then be applied to the stochastic data. 

The risk with the approach of relying on short blocks of data, real or simulated, is that the 
change signal may be dominated by sampling error noise. Investigating the signal to noise 
ratio should be done prior to assessing options regarding scaling. 

The available climate data could be used to understand the statistics, developing a set of 
scaling factors (distribution of factors), using a range of possibilities. In the case of Victoria 
DELWP, they used scenarios and apply scaling factors from GCMs (e.g. 10%, median, 90% 
for RCP8.5 and RCP4.5).  
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The scenarios also touch on how to handle extreme events. While this approach may not 
work out the ‘best’ answer, it will reflect the range of uncertainty.   

Chapter 4 of the Victorian DELWP report may be a useful reference for the methods being 
described in this section. 

 Choosing projected output timescale 

If assessments are needed for years in between future multidecadal blocks (over short time 
periods), consider using linear interpolation as per the DELWP approach. 

The DELWP approach also uses extrapolations to expand the time frame out beyond 2070, 
although the NARCliM 1.5 data set goes out to 2100, so extrapolation would not be required 
until after 2100. 

3.3 TEST/VALIDATE THE DPIE STOCHASTIC MODEL USING 
STREAMFLOW DATA 

 Issues in testing models with rainfall/ET 

The Panel expressed discomfort with testing DPIE stochastic models purely in the 
rainfall/evapotranspiration space, noting that the end-game for the use of the datasets is 
surface water management, therefore testing in the context of streamflow is also important.  

The presumption is that routing stochastically generated rainfall and ET through a calibrated 
rainfall-runoff model will produce streamflow series whose statistics are consistent with 
observed streamflow records. 

This remains an untested assumption. Given that the input required in river basin simulation 
is streamflow, it is critical to the integrity of river basin modelling process that this 
assumption be tested. 

Therefore, the Panel recommends the use of a stochastic rainfall and evapotranspiration 
stochastic model, running it through rainfall/runoff models, and comparing it to long 
streamflow records (not regulated streams) to test final outputs. If this isn’t done, there is a 
risk that the issue is only partially considered. 

The need for testing is all the more important when one considers the inherent risks in the 
stochastic rainfall approach. These include:  

• It is likely that despite best efforts, the DPIE stochastic model of rainfall and PET will 
have deficiencies which may be amplified by the rainfall-runoff transformation.  

• Rainfall-runoff models are conceptual models that require calibration to observed 
data. At best they reproduce satisfactorily all aspects of the observed data, more 
likely they provide a compromise, estimating some aspects of the data well and 
others poorly. Moreover, they may not perform adequately under climate forcing that 
is qualitatively different to the calibration period such as during extended drought. 
The work of Saft and her colleagues27 has identified this as a significant issue for 
models calibrated to pre-Millennium drought data. A major weakness of conceptual 
rainfall-runoff models is that they do not account for vegetation dynamics (including 
response to prolonged water stress and carbon fertilisation). 

• The rainfall-runoff model does not account for all the variability in observed 
streamflow. Ignoring this residual variability, which can be quite large, can further 
undermine the integrity of the process  

 
27 Saft, M., M. C. Peel, A. W. Western, J.-M. Perraud, and L. Zhang (2016), Bias in streamflow projections due to 

climate induced shifts in catchment response, Geophys. Res. Lett., 43, 1574–1581, doi:10.1002/2015GL067326. 
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 Split sample testing/validation using streamflow data 

The Panel notes the importance of validating the rainfall approach using streamflow data 
within the current timeline. At the very minimum, the stochastic rainfall approach needs to be 
tested against reliable streamflow records using a split-sample testing regime. It is expected 
the outcome of such testing will not be comforting so it is important that any shortcomings be 
taken into account when making decisions in the near future. It may end up being better to 
stochastically simulate streamflow directly.28  

Emphasis should be given not only to the frequency and duration characteristics of dry spells 
but also the rainfall characteristics of dam-filling (or near-filling) events (single or otherwise). 
The latter exercise would require a forensic look at the records to give a better idea of model 
performance, that is, determine metrics that impact water availability and how well the model 
performs against those. 

Having knowledge about local runoff generation processes can help here too. In Southwest 
Western Australia, part of the recent streamflow decline is due to the detachment of perched 
water tables from stream channels and associated variable source areas. It now takes more 
rainfall to produce runoff, and the increase in the interarrival time between moderate and 
larger rainfall events exacerbates the problem. 

DPIE provided the Panel with information on Quality Control (QC) work undertaken to 
address this issue. The Panel noted that the QC process used by DPIE does not mention 
split sample testing, which is arguably the most effective tool to detect non-stationarity. The 
tests described in the QC document are necessary but not sufficient. The Panel has 
experience with models that can pass the tests described in the QC document but fail split 
sample tests. This can occur because the QC tests are focussing on properties of marginal 
distributions (i.e. properties of the whole record), and they are not designed to look for 
change. 

For the QC tests described by DPIE, the Panel recommends the use of p-values to evaluate 
the consistency of the observed statistics with model sampling distributions.  

The Panel was not aware of DPIEs experience using the QC tests. However, the Panel 
noted that unless the rainfall-runoff model has a high goodness of fit score, they suspect 
tests dealing with variability and extremes may not fare well. There are many tests available, 
but given DPIE’s objectives, a judicious selection should lead to a small suite of options. 
Given there is a distinct possibility of trends in the observed data, the Panel doesn’t 
recommend using the correlation coefficient. 

3.3.2.1 Rolling approach to model evaluation 

A potentially useful approach to model evaluation involves the use of a rolling approach and 
drawing traces of the resulting parameter estimates (for rainfall and hydrological models) to 
gauge the impact of additional observations as the analysis moves through the historical 
record. The traces would capture any changes in the parameter estimates (size and sign) 
over time and reveal the extent of any systematic change. It would also facilitate a 
performance comparison between 'frozen' calibrated models and models in which the 
parameter estimates are updated over time. The performance metrics should concentrate on 
water availability. This is described in further detail in Appendix 4.  

The rolling approach corresponds to a moving window through the observed time series. By 
calibrating parameters for each window, it can be thought of as a non-parametric 
nonstationary model with no assumptions made about the nature of the non-stationarity 

 
28 It was noted that some agencies like Hunter Water generate stochastic models directly for streamflow and that 
there could be merit to test this approach - to generate stochastic models directly in the streamflow space and 
compare to the approach of generating stochastic models for rainfall/ET as input into the rainfall/runoff models. 
There are pros and cons to both approaches, but the stochastic generation of flow could address some of the 
PET issues and save time; however, there may also be need for consistency of approaches across the state. 
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other than window length. This contrasts with the parametric non-stationary models which 
use an exogenous covariate in a parametric setting.  

Both of these approaches are data-driven and are capable of representing present climate 
risk and possibly near future risk. They definitely offer an alternative (possibly tidier) 
approach to the baseline approach using a stationary model.  

The Panel recommends that the stochastic rainfall approach needs to be tested against 
reliable streamflow records using split sample testing regime or rolling origin approach to 
model evaluation. This will involve running the DPIE stochastic model through rainfall/runoff 
models and comparing against long streamflow records, as well as testing the DPIE 
stochastic model’s performance through a forensic look at the rainfall characteristics of dam 
filling events. Metrics that impact water should be part of the evaluation process. 

This will involve UoA/UoN making available stochastic rainfall and ET to DPIE-Water, and for 
DPIE-Water to run forcing through their calibrated models and UoA/UoN would undertake 
the split-sample and/or rolling origin analysis. There may also be a need to apply post-
processing algorithms, which has a precedent through work done by BOM and other parties. 
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4 FURTHER COMMENTS - PROPOSAL FOR GREATER SYDNEY 
REGION 

The Panel agrees that it is worth proceeding with the UoN (Kiem) proposal for Greater 
Sydney region (Appendix 3). The Panel’s comments reflected below acknowledge the 
challenges to this work. Kiem in his proposal has emphasised these challenges and the risk 
of outcomes that may not end up being necessarily useful. Conversely, if this work did 
provide insight it would be very valuable; the proposal should proceed with the 
understanding that expectations need to be managed. 

In summary, the proposal from UoN offers the potential to gain the kind of understanding 
that was obtained for Newcastle catchments in previous RWS work. The value of that could 
be considerable. There is also some valuable scaffolding from the UoA work, as well as 
foundation elements achieved through UoN’s published work.  

The Panel also notes that while it is good that methods used across the state are as 
consistent as possible, differences in specific regions may warrant augmenting approaches. 
Importantly, the methods used have to be justified. 

Comments on some of the steps in the proposal follow. 

 Identify weather systems 

The Panel discussed that the Greater Sydney water supply comes from a large region 
covering both coastal and inland areas that might be subject to different weather patterns or 
multiple drivers in different parts of the catchment.  

Approaches to identify key weather systems are informative. Weather typing has been 
undertaken a number of times before, such as PhD work by Acacia Pepler at UNSW Sydney 
on East Coast Lows. Repeating this exercise may not lead to new knowledge, although 
doing it with BARRA or ERA-5 may create new knowledge. As the data exist at National 
Computing Initiative (NCI) and the codes to do the weather typing exist, it would not be a 
major challenge and something new might be discovered.29 

Weather typing is important, but practitioners need to think beyond simple correlation 
analysis and consider things beyond drivers such as ENSO, IPO, etc. Eastern Australia 
seasonal rainfall (east of the Great Dividing Range) doesn’t correlate well with ENSO. 
Previous work has tried to identify what causes interannual to decadal variability in Sydney’s 
rain/flow.  

It is not known what controls the variability in ECL frequency, in part because early work 
lumped ECLs into one type, but newer work recognises that there are at least three types30 
and perhaps five types31, each associated with different mechanisms. This means 

 
29 Previous work on weather typing can be used as a starting point (e.g. ESCCI work by Acacia Pepler, Stuart 
Browning and Ian Goodwin on large scale drivers of East Coast Lows (10.22499/3.6602.004), Danielle Udy and 
colleagues work on Tasmania and Antarctica, as well as weather typing work by Pook and colleagues and Kiem 
and colleagues on Victoria. 
30 Dowdy AJ, Pepler A, Di Luca A, Cavicchia L, Mills G, Evans JP, Louis S, McInnes KL, Walsh K. (2019) Review 
of Australian east coast low pressure systems and associated extremes. Climate Dynamics, 53(7): 4887–
4910.https://doi.org/10.1007/s00382-019-04836-8. 
31 ECL types: 1) Easterly trough lows (ETL): events that track mostly east of the Great Dividing Range and in a 
southerly direction; 2) Southern secondary lows (SSL): events that track mostly over the ocean and in a northerly 
direction;3) Inland troughs (IT): events that evolve mostly over land, west of the Great Dividing Range and north 
of 30°S; 4) Continental lows (CL): events that evolve mostly over land, west of the Great Dividing Range and 
south of 30°S; 5) Extratropical cyclones (XTC): differentiation between ETLs and ECLs that evolve from tropical 
cyclones based on storm track trajectories is problematic, as both storm types develop in a similar region and 
follow similar tracks. However, the BOM maintains a database of all tropical cyclone occurrences and tracks from 

 

http://dx.doi.org/10.22499/3.6602.004
https://doi.org/10.1007/s00382-019-04836-8
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correlating ECLs with any driver is hugely challenging, as they need to be separated by type 
and mechanism and one might get different responses according to the mechanism. The 
Panel recommends this work as a worthwhile long-term research project.  

As referenced in Section 2.4.3, it is unknown whether the teleconnection patterns between 
climate drivers and temperature and rainfall will remain stationary into the future and whether 
they have been stationary in the past. Given work to date coming from the UoN, the Panel is 
also confident that this issue is well understood by the UoN team, and any analysis would be 
undertaken with the appropriate caution. As noted earlier, Kiem is clearly acutely aware of 
these issues and “merely hopes” to tease something useful from a combination of 
approaches. The Panel thinks this is the right way to view this, given that if something is 
identified it might be extremely valuable.  

A recently completed PhD from ANU presented back-trajectory modelling of all rainfall 
events in the Murray Darling, separating the northern from the southern basin. 

• Holgate, C.M., J.P. Evans, A.I.J.M. van Dijk, A.J. Pitman, 2020, Local and Remote 
Drivers of Southeast Australian Drought, Geophysical Research Letters, 47, 
e2020GL090238, doi: 10.1029/2020GL090238. 

• Holgate, C.M., J.P. Evans, A.I.J.M. van Dijk, A.J. Pitman and G. Di Virgilio, 2020, 
Australian precipitation recycling and evaporative source regions, J. Climate, 33, 
8721–8735, doi: 10.1175/JCLI-D-19-0926.1 

That data set might be worth interrogating to see where the rain actually came from, noting 
this is over the reanalysis period, not over multiple centuries. Perhaps one could take the 
back trajectories and then ask about the synoptic types coincident with the rain.  

 Use of palaeo data 

The Panel commented that using palaeo data is a good idea, but with the awareness that it 
is just information that provides data to infer other plausible scenarios or gain insights into 
previous examples of non-stationarity. The palaeo data shouldn’t be overstated. It can be 
used to get an idea of the baseline and of how representative the instrumental record is for 
things like length of IPO phases etc. 

The Panel was less supportive of using the Vance ice core but was strongly supportive of 
using the Wombeyan record. The latter was seen to have genuine potential value to inform 
Sydney dam inflows. 

 Climate modelling approach 

The Panel was open about the approach going forward, noting that the preceding steps will 
dictate the method, which should look for consistency. It was expected this approach would 
likely be a combination of weather systems and climate drivers. 

If variability can be linked to one (or a few) weather types, then the weather typing approach 
used for the South Coast region (linked to ECLs) might be feasible. However, it is expected 
that Greater Sydney will be more complicated and an approach similar to that used by UoA 
elsewhere (e.g. Hunter) may need to be used.   

 
1900 to present (http://www.bom.gov.au/cyclone/history/). XTCs are therefore defined as events that evolved 
from storms. (from NSW Office of Environment & Heritage AdaptNSW, 2016, Eastern Seaboard Climate Change 
Initiative – East Coast Lows Research Program Synthesis for NRM Stakeholders. Accessed at 
https://climatechange.environment.nsw.gov.au/Impacts-of-climate-change/East-Coast-Lows.) 

http://www.bom.gov.au/cyclone/history/
https://climatechange.environment.nsw.gov.au/Impacts-of-climate-change/East-Coast-Lows
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Executive Summary 
The Department of Planning, Infrastructure, Environment (DPIE) has undertaken a risk-based methodology 
to account for climate variability and change in developing its Regional Water Strategies (RWS), in which 
the risk assessment is informed by the use of stochastically generated long-term sequences that reflect 
climate variability beyond that contained within the instrumental record. An independent expert panel 
review of this climate risk method commended many aspects of the methodology, but recommended 
further review of: 

1. The potential non-stationarity of historical climate data used to inform the stochastic models, to 
determine whether changes in climate in recent decades affect estimates of present-day climate 
risk compared with climate risk based on the whole observed record, by (a) assessing non-
stationarity of the historical record; and (b) split-sample testing of the stochastic model. 

2. Investigation into the effects of multiple climate drivers, to develop the methodology for 
stochastic generation in regions where multiple climate drivers influence the regional hydro-
climate. 

These recommendations are addressed in this report in the context of rainfall, temperature and 
evapotranspiration for the Southern Basin, using a ‘multiple lines of evidence’ approach to determine the 
presence and potential causes of any non-stationarity. Specifically, this report documents a review of 
literature on the physical mechanisms influencing the regional climate of southeast Australia, reported 
trends in hydro-climatic variables, and future projections in this region. This review is complemented by a 
pilot study using data from Ovens, Upper Murray, and Snowy catchments to assess trends in historical 
record and implications for stochastic simulations generated using the data. The pilot analysis used 49 
rainfall time series and 30 evapotranspiration time series from these catchments, and three temperature 
time series at nearby locations from a homogenized dataset. The trends in seasonal and annual 
evapotranspiration, temperature and attributes of rainfall are studied using Mann-Kendall test. Split sample 
stochastic simulations are performed on the rainfall and evapotranspiration time series. 

The main findings are summarised as follows.  

1.  Stationarity in temperature, rainfall and evapotranspiration 

• Temperature: Literature documents temperature increases in this region, especially post 1960. The 
‘Climate Change in Australia’ initiative reports an increase of 0.8°C in mean annual temperature in 
the Murray basin cluster (which contains the pilot catchments) over the 1910-2013 time period 
assuming a linear trend, with higher trends for temperature minima than for maxima; this is 
broadly consistent with a mean temperature increase over Australia by just over 1°C during the 
slightly longer period from 1910 to 2018. Moreover, climate projections indicate that increases of 
0.6 to 1.3 degrees are expected in the Murray Basin cluster in the near-term (2020 to 2039) with 
respect to a 1986-2005 baseline. Trends in homogenized temperature sites near the pilot 
catchments are broadly consistent with these findings, with increases of 0.8-1.5°C in maximum 
temperatures and 1.9-2.6°C in minimum temperatures during the period 1913-2018. These 
multiple lines of evidence are in agreement that there is non-stationarity in the temperature record 
of the southern system. 

• Rainfall: Literature documents decreasing trends in cool season (April to October) rainfall by 10-
20% in southeast Australia since mid-1990s, predominantly in autumn and early winter. There are 
accompanying decreasing trends in the number of wet days during the cool season. Literature 
documented that “the decline in rainfall across south-eastern Australia was at least partly 
attributable to climate change” (CSIRO, 2012) and “drying across southern Australia cannot be 
explained by natural variability alone” (CSIRO & BOM, 2015). In the Ovens Murray catchment, 
Victoria Climate Projections 2019 (VCP19) project median annual rainfall decreases during the 2020 
to 2039 period amounting to about 6% (11%) under the medium (high) emission scenarios 
(uncertainty range from -3% to -18%), with respect to a 1986-2005 baseline. The results of the 
trend assessment using data from the pilot sites are in general agreement with literature, showing 
decreasing trends in cool season rainfall and the number of wet days. The median total autumn 
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rainfall trends amount to -5.5%/decade at the pilot sites over the period from 1950 to 2018. Thus 
multiple lines of evidence indicate that the historical rainfall record in this region is non-stationary 
due to the changes in the cool season. The pilot sites also shows a short term decline in spring 
(SON) rainfall and increase in intensity of extreme rainfall intensity. These trends are not in 
agreement with all literature, but consistent with regional studies in nearby catchments.  

• Evapotranspiration: Literature documents decreasing trends in pan evaporation over the period 
1975-2002, whereas studies using more recent data (up to 2016/2018) report insignificant 
increasing trends. There are long term increasing trends in annual Morton wet evapotranspiration 
at the pilot sites, whereas short-term trends are insignificant. The pilot study results are not directly 
comparable with available literature based on pan evaporation data given differences in processes 
that drive pan evaporation and Morton wet evapotranspiration. Thus, non-stationarity in the 
historical record of evapotranspiration remains highly uncertain. VCP19 projects 8 to 10% increases 
in pan evaporation by 2030s (2020-2039). 

2. Influence of climate drivers on meteorological variables in the Southern Basin 

• The documented influence of climate drivers on key meteorological variables in the Southern Basin 
is summarised in this report. The declining cool season rainfall is associated with an expansion of 
the tropics, increasing intensity of the sub-tropical ridge over the continent and positive trends in 
the Southern Annular Mode (SAM). Literature indicates that these changes in large scale patterns 
during the cool season are at least partly attributable to climate change. Other climate drivers, 
notably El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), influence the inter-
annual variability of regional rainfall, primarily affecting rainfall in winter and during the warm 
season (CSIRO, 2012; CSIRO & BOM, 2015; Hope et al., 2017). 

3. The importance of stochastic generation calibration period on key statistics 

• Consistent with the trend assessment, the split-sample tests demonstrate that the period used for 
calibration can significantly influence the statistics of the simulated data. In particular, the split-
sample tests show that the millennium drought is a ‘high-leverage’ event, in the sense that 
statistics of the simulated rainfall can vary significantly depending on whether the drought is 
included in the calibration period or validation period. When the drought is included in the 
calibration period, the extent of similarity between the simulated rainfall and observed data 
following the drought is dependent upon the statistic and season under consideration. For 
example, inclusion of the drought in the calibration period brings the autumn rainfall in the 
simulated data close to recent (2010-2018) observations (reduction of biases in simulations from 
+24% to -4%) but can cause a larger deviations in simulated summer rainfall (increase in biases 
from +16% to +29%) from recent observations.  

• The implications of non-stationarity is that the calibration period needs to be carefully considered 
in the context of any Southern Basin stochastic analysis, with the appropriate approach likely to 
depend on whether the objectives are to represent risk over ‘historical’, ‘current’ or ‘future’ 
periods.  

4. Recommendations for stochastic data generation 

TO BE COMPLETED 
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1   Introduction 
Department of Planning, Infrastructure, Environment (DPIE) has undertaken a risk-based methodology to 
account for climate variability and change in developing the Regional Water Strategies (RWS). The method 
involves the use of stochastically generated long term sequences of climate data to characterize the 
“current” climate, and application of scaling factors to the stochastic data to generate future climate 
projections. The stochastic modelling uses historical (observed/reconstructed) records of daily rainfall, 
evapotranspiration and temperature to generate synthetic data for 10,000 years that reflect variability over 
the instrumental record from 1889 to 2018. The stochastic sequences provide insights into natural climate 
variability beyond the available observations. The scaling factors for a future climate are derived based on 
projections from the NSW and ACT Regional Climate Modelling (NARCliM) project, and applied to the 
stochastic data to characterise future climate risk.  

The stochastic data generation methodology has been applied to multiple basins across the New South 
Wales using a multi-site stochastic data generator conditioned on the Inter-decadal Pacific Oscillation (IPO) 
documented in (Leonard & Westra, 2020). A similar method is planned to be applied for data generation in 
the southern basin of New South Wales, consisting of the New South Wales Murray and Lower Darling, 
Murrumbidgee, and parts of Victorian Murray water resource plan areas, shown in Figure 1. An 
independent expert panel review of the DPIE climate risk method recommended that ongoing 
improvement of the stochastic generation methodology be given high priority. The panel recommended 
further work to understand the implications of (1) the influence of multiple climate drivers, and (2) the 
existence of non-stationarity in the instrumental record of the southern New South Wales region on 
stochastic time series generation. The work presented in this report addresses these questions. 

 

Figure 3 Southern basin of New South Wales 

The regional climate of southeast Australia is highly variable, and there is a strong a priori reason to suspect 
that key meteorological variables are likely to already be experiencing change in the southern system. 
Literature notes warming signals in mean temperatures that are distinguishable from the background inter-
annual and low frequency variability in this region (Ukkola et al., 2019). These temperature changes are 
consistent with expected changes due to climate warming (Jones, 2012; Karoly & Braganza, 2005). The 
regional rainfall patterns exhibit substantial variability (CSIRO, 2012; Hope et al., 2017), and is potentially 
affected by both natural and anthropogenic influences on the climate system. These influences on the 
changing patterns of rainfall in this region have been the subject of much focussed research, especially 
since the Millennium drought.  
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Section 2 of the report briefly reviews literature on the influences of regional and large scale climate drivers 
on the precipitation patterns in southeast Australia and the historical and expected changes in these 
influences, to assist in interpreting non-stationarity results in subsequent parts of this report. Section 3 
summarises literature on the historical trends in climatic variables in this region and section 4 summarizes 
the future climate projections. Subsequently, a pilot study using data from representative catchments in 
the southern New South Wales and Victoria are undertaken to assess the observational record. The 
assessment involves an analysis of trends in the observed data from the pilot sites and split-sample 
calibration and validation of stochastic replicates as recommended by the expert review panel. The results 
of this pilot study is presented in Section 5 of this report. Based on the review of literature and the results 
of the pilot study, we provide options and recommendations for stochastic data generation to characterise 
“historical” and “current” climates in southeast Australia in Section 7. 

2   Large-scale patterns of variability and change 
relevant to southeast Australia   
The precipitation in southeast Australia exhibits substantial inter-annual and intra-seasonal variability, 
influenced by large scale patterns of global ocean-atmosphere variability. Different moisture systems 
contribute to precipitation in this region. These include low pressure systems that bring in moisture from 
the Southern ocean, north western cloud bands that originate in the Indian Ocean, eastern coastal troughs 
from northern Australia, and east coast low pressure systems (CSIRO, 2012; Dowdy et al., 2019; Hope et al., 
2017). The region exhibits a cool season precipitation regime which is dominated by moisture contributions 
from Southern westerlies. The circulation patterns in the Southern Oceans affect the location of sub-
tropical ridge in the Australian mid-latitudes which in turn influence the penetration of low pressure 
systems from the south into the continent during the cool season. 

Thus, the regional precipitation in this region is influenced by the oceanic and atmospheric patterns in the 
surrounding Pacific, Indian and Southern Oceans, which collectively ‘modulate’ weather patterns by 
imparting long-term (generally interannual) persistence, and also mediate some (particularly circulation-
related) aspects of the anthropogenic climate change signal on local weather patterns. The indicators of 
these patterns, typically referred to as climate ‘drivers’, are the El Niño Southern Oscillation (ENSO), the 
Indian Ocean Dipole (IOD), Southern Annular Mode (SAM), and the Inter-decadal Pacific Oscillation (IPO). 
These drivers influence the regional rainfall in SEA in different seasons and at different scales (CSIRO, 2012; 
Hope et al. 2017). We briefly summarize the current understanding of these influences in the following sub-
sections. The summary is based on the technical reports by the southeast Australia Climate Initiative 
(SEACI) (CSIRO, 2012), Climate Change in Australia (CSIRO & BOM, 2015; Timbal et al., 2015), Victoria 
Climate Initiative (VicCI) (DELWP, 2016; Hope et al., 2017) and Victoria Climate Projections 2019 (VCP19) 
(Clarke et al., 2019a). 

2.1   Influence of large scale drivers: ENSO, IOD, SAM, and IPO 

ENSO and IOD are dipole modes of ocean-atmosphere variability in the tropical Pacific and Indian Oceans. 
Positive values of IOD refer to higher sea surface temperatures (SSTs) in the western equatorial Indian 
Ocean, and El Niño is the ENSO mode associated with higher SSTs in eastern equatorial Pacific Ocean. 
Positive IOD and El Niño are thus associated with higher SSTs and tropical convective centres that are 
located farther away from the Australian continent, leading to lower rainfall in Australia. ENSO and IOD are 
understood to influence the rainfall in SEA primarily during winter and spring (CSIRO, 2012; Hope et al., 
2017). 

The SAM is a mode of mid- and high-latitude climate variability associated with north-south shift of the 
atmospheric mass between the polar region and the mid latitudes. A positive value of SAM indicates a shift 
of mid-latitude storm tracks towards the South Pole. SAM influences the rainfall over SEA differently in 
different seasons. During winter, a positive SAM is associated with a shift of mid-latitude storm tracks 
towards the poles, reducing rainfall over SEA. During the summer, a positive value of SAM is associated 
with increased onshore transport of tropical moisture in eastern Australia and a subsequent increase in the 
warm season rainfall.  
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Thus, in general, positive SAM, positive IOD and El Niño events result in lower cool season rainfall in SEA. 
The relationships are further complicated due to interactions between these modes. On decadal time 
scales, a pattern of Pacific climate variability, the IPO, affects the inter-annual variations associated with 
ENSO and IOD. When the IPO is in the negative phase (cold phase), variability of ENSO and IOD are 
weakened, and the coupling between them is also weakened. During this phase, the impacts of ENSO and 
IOD on the eastern Australian rainfall is strengthened. The variability in SAM is also related to the ENSO, 
mainly during the warm season (Hope et al., 2017). 

2.2   Influence of east coast lows on the southeast coast 

In addition to the large scale drivers outlined above, the precipitation in the southeast coast is influenced 
by low pressure systems known as East Coast Lows (ECLs) (Dowdy et al., 2019). ECLs are cyclonic systems 
that occur near the south-east coast due to both mid-latitude and tropical influences. These systems can 
occur during any time of the year, but are more common and intense during the cooler months (Dowdy et 
al., 2013). ECL-related rainfall events exhibit a spatial contrast since the rainfall from these events primarily 
occur on the eastern coastal regions rather than inland areas, due to presence of the Great Dividing Range. 
These systems may also cause snowfall in the mountainous regions of southeast Australia (Fiddes et al., 
2015). ECLs are associated with large rainfall events and multiple climate hazards in the southeast coast. 
These impacts have resulted in focussed research in recent years to study the characteristics of ECLs, the 
influence of climate drivers on ECLs, and their expected changes into the future.  

Studies have characterized ECLs in observations using multiple climatic features and report a large inter-
annual variability in the number of ECL systems in the historical record (Di Luca et al., 2015; Pepler et al., 
2015). The relationship of ECLs to large scale climate drivers (ENSO, IOD and SAM) are reported to be 
generally weak, but some studies report mixed findings that indicate that some types of ECLs may 
potentially be related to the SAM (Dowdy et al., 2013; Pepler et al., 2015). A warming climate is expected to 
result in fewer ECL-related rainfall events during the cooler months, while there are large uncertainties in 
the expected ECL changes during the warmer months. The historical record also shows a decline in the 
number of ECLs, but the trend is not significant (Dowdy et al., 2013; Pepler et al., 2015). 

Studies have examined the skill of regional climate models in simulating ECLs in historical and future 
scenarios. Regional simulations reproduce the climatology of ECLs (Di Luca et al., 2016), and future regional 
climate projections from NARCliM exhibit a decline in ECL frequency during the cooler months. The 
decreasing signal is reported to be robust in the different ensemble members and is consistent with the 
decreasing trend in the historical record and expected changes into the future (Pepler et al., 2016).  

3   Climatic trends in the historical record of southeast 
Australia 
In this section, we review publications documenting the historical trends in precipitation, evaporation and 
temperature in southeast Australia (SEA). This region broadly covers the mainland Australian region south 
of 33°S and east of 135°E and encompasses most of the southern basin that is the focus of this report. It is 
to be noted that there are some differences in the region referred to as “southeast” in various studies in 
literature, however these latitude–longitude ranges are broadly consistent. 

3.1   Rainfall  

There is a well-documented decreasing trend in mean rainfall during the cool season, primarily during 
autumn, in SEA. This trend is reported in studies since the mid-2000s; the reduction in cool season rainfall 
post mid-1990s influenced the long-term and medium-term mean precipitation trends in this region 
(Gallant et al., 2007). The reported trends in the attributes of precipitation are summarized in Table 1. 

Further research explored the climatic features that lead to the reduction in precipitation. The cool season 
decline was a notable feature of the millennium drought that this region experienced from 1996 to 2009; 
the signal has persisted post the drought. Figure 2 shows the cool season (April to October) rainfall anomaly 
in southeast Australia during 1900 to 2018 from the 2018 State of the Climate report (BOM and CSIRO, 
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2018). The report documents that the southern half of Australia (south of 26°S) had below-average Apr-Oct 
rainfall in 17 of the last 20 cool seasons, since 1999. The recent years with above-average rainfall (2010, 
2016) were generally associated with drivers of higher than usual rainfall across Australia (strong negative 
IOD in 2016; La Niña in 2010) (BOM & CSIRO, 2019) 

 

Figure 4 Anomalies of April to October rainfall for southeastern (south of 33° S, east of 135° E inclusive) Australia. Anomalies are 
calculated with respect to 1961 to 1990 averages (Source: BOM and CSIRO, 2019) 

The current understanding indicates that changes in large-scale atmospheric features influence the 
observed trends. ENSO and IOD primarily influence the rainfall in SEA during winter and spring and they do 
not have a major impact on the autumn rainfall. Hence these climate drivers are not thought to be the 
primary cause of the declining autumn rainfall (Timbal & Hendon, 2011). The general consensus from SEACI 
and VicCI (CSIRO, 2012; CSIRO & BOM, 2015; Hope et al., 2017) suggests that the decline in cool season 
rainfall is associated with the expansion of the tropics, and increasing intensity of the sub-tropical high 
located over the continent. Tropical expansion causes the mid-latitude storm tracks responsible for most of 
the cool season rainfall in south-east Australia to move further south. The tropical expansion and changes 
in the intensity of sub-tropical high are also associated with positive trends in SAM, which indicate a 
poleward shift of the mid-latitude westerlies.  

These climatic changes and the precipitation trends in the region are at least partly attributable to climate 
warming (CSIRO, 2012; CSIRO & BOM, 2015; Hope et al., 2017). Experiments using climate models indicate 
that expanding tropics can only be reproduced when global atmospheric changes in greenhouse gases, 
aerosols and depletion of stratospheric ozone are incorporated into global model simulations (Nguyen et al. 
2015). Literature has studied the regional variation in Hadley circulation by dividing the globe into three 
“sectors” based on centres of upper level tropical divergence (depicting upward branch of the Hadley 
circulation) (Nguyen et al., 2018). There is enhanced expansion of the Hadley circulation in the Asia-Pacific 
(Australian) sector compared to the African and South American sectors. This regional expansion is linked 
to the negative phase of the IPO, and may reduce when the IPO changes phase (Nguyen et al., 2018). 
Therefore, both natural variability and climate warming are understood to contribute to the declining 
rainfall trends in SEA (Hope et al., 2017). 

While tropical expansion and trends in SAM appear to be the drivers of the cool season precipitation trend 
in this region, the influence of other drivers, such as the ENSO and IOD, are relevant with respect to the 
changes during warm season. A La Niña mode concurrent with a negative phase of the IOD is associated 
with the rainfall events during spring of 2010/11 that marked the end of the millennium drought.   

Table 3 Summary of reported precipitation trends in the historical record of southeast Australia 

Authors Dataset Period Region Index Type Findings 

Gallant et 
al. (2007) 

Stations (95 
across 
Australia) 

1910-
2005 

1950-
2005 

Six regions 
in Australia 

 

 

Total rain 

Rain days (threshold = 1 
mm) 

Mean rain per rain day 

For the southeast region, long-
term (1910-2005) results show 
decreasing trends in autumn in 
total rainfall and extreme 
intensity. 
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Extreme intensity, 
frequency, and 
proportion of the total 
(95th and 99th percentile 
thresholds) 

 

 

In the medium term (1950-
2005), autumn rainfall indices 
show decreasing trends in most 
characteristics of rainfall, 
except the extreme proportion 
indices which showed 
significant increasing  trends 

 

Alexander 
et al. 
(2007) 

0.25° x 
0.25° 
gridded 
data 

1910-
2005  

1950-
2005 

Whole 
Country 

Annual and seasonal 
precipitation 

Extremes (Max 1-day, 
Max 5-day) 

Number of heavy and 
very heavy precipitation 
days 

Consecutive wet and dry 
days 

Annual proportions from 
extremes 

(Note: detailed results 
from these indices are 
not included in the 
publication) 

Decreasing trends in autumn 
precipitation in southeast 
Australia during 1950-2005 

Trends in extremes are 
correlated with the trends in 
mean, in general, across the 
whole country. 

Taschetto 
& England, 
(2009) 

Gridded 
BoM 
Rainfall 
data at 0.5° 
resolution 

1970-
2005 

Whole 
Country 

Annual and Seasonal 
Total Rainfall 

Frequency of moderate 
(up to 1 SD from the 
mean), heavy (from 1 to 2 
SD from mean), very 
heavy (more than 2 SD 
from mean) rainfall 
events 

Decreasing trends in rainfall 
over Victoria, Southern South 
Australia and Southern New 
South Wales during summer 
and autumn (stronger in 
autumn). Frequency of very 
heavy rainfall events during 
MAM also show a decline. 

Risbey et 
al., (2013) 

Average 
rainfall 
from 8 
stations in 
Malle 
region in 
Victoria  

1956-
2009 

Malle 
region in 
Victoria  

Total rainfall during the 
cool season (Apr to Oct) 

 

Decreasing trends in cool 
season rainfall 

Reported to be primarily 
associated with a decline in 
rainfall from cut-off lows 

Theobald 
et al. 
(2016) 

Station data 1958-
2012 

Snowy 
Mountains 

Annual, cool season (Apr 
to Oct), and warm season 
(Nov to Mar) rainfall total 
and frequency of wet 
days and heavy 
precipitation days (P > 
1mm) & (P > 10mm) 

Frequency and intensity 
of extreme precipitation 
(P > 90th percentile 
threshold) 

Annual decreasing trends in the 
frequency P>10mm events, but 
an increase in the total 
precipitation the events 
generate. The increase in 
precipitation from these events 
occur during the warm season. 

Annual intensity of extreme 
precipitation shows an 
increasing trend. 
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Ukkola et 
al., (2019) 

Area 
average 
records 
from BoM 
for 6 
regions 
across 
Australia 

1900-
2018 

Whole 
Country 

Annual and Seasonal 
totals 

No significant trends in regional 
mean rainfall in southeast 
Australia 

 

3.2   Temperature 

Literature reports a warming signal in temperature records in southeast Australia, consistent with the 
expected changes due to global warming. Karoly and Braganza (2005)studied the trends in minimum 
(Tmin), maximum (Tmax) and mean daily temperatures in southeast Australia over a 50 year period from 
1954 to 2003, after removing the rainfall related component of temperature variations. The study reports a 
clear anthropogenic warming signal in observed temperature trends in southeast Australia. Jones (2012) 
note discrete step changes in minimum and maximum temperatures in southeast Australia, and attribute 
these changes to episodes of anthropogenic regional warming. The study reports that the temperature 
data of southeast Australia is stationary from 1910 to 1967 followed by a series of step changes: 0.7°C in 
Tmin in 1968, 0.5°C in 1973 in Tmax and 0.8°C in Tmax in 1997, attributed to anthropogenic warming. We 
summarize the reported trends in temperature records in the SEA in Table 2, which shows increasing trends 
in mean, minimum and maximum temperatures over the region. 

Thus, there is a well-established warming signal in the temperature records in SEA, especially post 1960. 
The ‘Climate Change in Australia’ initiative reports an increase of 0.8°C in the Murray Basin cluster (Timbal 
et al., 2015) (which consists of most of the southern basin), over the 1910-2013 time period assuming a 
linear trend. The trends are higher for temperature minima (total increase of 1°C) than for maxima (total 
increase of 0.7°C) The mean temperature over Australia has increased by just over 1°C during the period 
1910-2018, the Victoria mean historical changes over 1910-2018 reported by VCP19 (Clarke et al., 2019a) is 
also just above 1°C.  

 

Table 4 Summary of reported temperature trends in the historical record of southeast Australia 

Authors Dataset Period Region Index Type Findings 

 

Ashcroft & 
Karoly 
(2012) 

Daily data from 103 
stations across the 
country 

Monthly area-
averaged 
anomalies for 
states and 
Northern Territory 

1860-1909 

1910-1959 

1960-2011 

1860-2011 

Southeast 
Australia 

Annual, DJF, 
and JJA means 
of Tmax, Tmin  

Diurnal 
Temperature 
Range (DTR) 

Positive trends in Annual, DLF, 
and JJA Tmax and Tmin. Stronger 
trends in Tmax (1.12°C) and Tmin 
(0.93°C) post 1960. 

Jones 
(2012) 

Homogenised 
temperature data 
on a 0.25° grid 

1910-2010 Southeast 
Australia 

Annual means 
of Tmin and 
Tmax 

Positive step changes in Tmin 
and Tmax post 1967 

Ukkola et 
al. (2019) 

Area average 
records from BoM 
for 6 regions across 
Australia 

1910-2018 Whole 
Country 

Annual and 
seasonal mean 
temperature 

The mean air temperature trends 
during all seasons are positive 
and statistically significant in 
southeast Australia. The 
strongest trends are in summer 
(DJF, 0.015 °C/yr) and autumn 
(MAM, 0.012 °C/yr) 
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3.3   Pan evaporation 

The non-stationarity in historical evapotranspiration records is not well established. The available literature 
have used pan evaporation records to study trends post year 1975. Earlier studies reported a decreasing 
trend in pan evaporation over 1975-2002 period across the country potentially due to reduced atmospheric 
demand associated with decreasing wind speed or radiation (Roderick & Farquhar, 2004). This trend is 
reduced or reversed (i.e., increasing trends or no trends) in more recent analyses using data up to 
2016/2018 due to temperature driven changes in vapour pressure deficit (Stephens et al., 2018; Ukkola et 
al., 2019). We summarize these reported trends in Table 3. 

Table 5 Summary of reported evapotranspiration trends in the historical record of southeast Australia 

Authors Data-set Period Region Index Type Findings 

Roderick 
and 
Farquhar 
(2004) 

30 BoM 
sites across 
the country 

1970-
2002 

Entire 
Country 

Pan Evaporation 

 

Decreasing trends over Australia 
primarily due to a decline in 
atmospheric demand, associated with 
declines in surface radiation or wind 
speed 

 

Stephens 
et al. 
(2018) 

41 BoM 
sites across 
the country 

1975-
2016 

Entire 
Country 

Pan Evaporation The declining trends detected earlier 
have reduced, or become neutral in 
southeast Australia. The changes in 
trends from previous reports are due 
to increases in temperature driven 
vapour pressure deficits. 

 

Ukkola et 
al. (2019) 

Area 
average 
monthly 
observations 
from BoM 

1975-
2018 

Whole 
Country 

Pan Evaporation No significant trends in southeast 
Australia 

 

4   Future climate projections for southeast Australia 
We include a summary of the future climate projections for this region as an alternate line of evidence to 
understand climatic non-stationarity. Climate projections for southeast Australia indicate future 
precipitation and temperature changes consistent with the trends in the current observational record, i.e., 
warmer and drier in general, especially in the cool season. From climate model projections, positive values 
of the SAM and an increase in the number of positive IOD events are likely in the future, bringing drier 
conditions to south-east Australia during the cool season. The changes in ENSO and its interactions with the 
SAM and IOD into the future are currently unknown (Clarke et al., 2019a; CSIRO, 2012).  

Future projections for the Murray Basin cluster are documented as part of the CCIA initiative (Timbal et al. 
2015). This cluster includes most of the southern basin region that is the focus of this report. Climate 
projections indicate that increases of 0.6 to 1.3 degrees are expected in the Murray Basin cluster in the 
near-term (2020 to 2039) with respect to a baseline of 1986-2005.The report considers the physical 
understanding of climatic relationships and results from downscaling future projections to conclude that 
there is high confidence that cool season rainfall will decline in future, but the magnitude of decline is very 
uncertain (Timbal et al. 2015). In the near term (2030), it is reported with high confidence that natural 
climate variability will remain the major driver of rainfall differences from the climate of 1986–2005. 
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The latest climate projections from the Victoria Climate Projections 2019 (VCP19) include regional 
projections for the Ovens and Murray catchments (Clarke et al., 2019b) that are also used in the pilot study 
documented in Section 5 of this report. The key changes projected for these catchments are: 

Daily minimum and maximum temperatures are projected to continue to increase, with an increase in 
Tmax of 1.0 to 1.9 °C (since 1990) are expected by 2030s 

Rainfall is projected to be very variable, but will continue to decline in winter and spring (medium to high 
confidence) and autumn (low confidence) 

Intensification of 1-in-20 year maximum daily extreme rainfall events 

The VCP19 report projects changes under medium (RCP 4.5) and high (RCP 8.5) emission scenarios with 
respect to a baseline climate of 1986 to 2005. The changes are projected for 20 year time slices up to year 
2090. The first time slice of projected changes spans 20 years from 2020 to 2039. Thus, the “current” 
climate (year 2020) marks the beginning of the first period of projected change in this report. The projected 
rainfall changes in the Ovens and Murray catchments reported by VCP19 are shown in Figure 3. 

 

Figure 5 Projected changes (compared to 1986-2005) in annual mean rainfall in the Ovens Murray catchment for medium emissions 
(top) and high emissions (bottom). Bars show the 10th to 90th percentile range. Blue bars: results from the new downscaled 
modelling. Dark vertical line: median. Dark blue dots: individual models. Green bar: results from all available modelling (high 
resolution and GCM) for comparison at 2090 (Source: Clarke et al. 2019b) 

The annual mean rainfall during 2020 to 2039 is projected to decrease with the largest declines during 
spring. The projected median change in annual rainfall is is -6% (range of -12% to -4%) under the medium 
emissions scenario, and -11% (range of -18% to -3%) under high emissions scenario with further declines 
anticipated in subsequent decades (Figure 3). The annual maximum temperatures are expected to increase 
by 1.1°C (1.4°C) under medium (high) emission scenarios during the 2020 to 2039 time slice; the projected 
changes in minimum temperatures are smaller in magnitude for the Ovens Murray catchments. The 
projected annual changes in pan evaporation during 2020 to 2039 are positive, with a median change of 8% 
(10.8%) under medium (high) emission scenarios. 

5   Pilot study: assessment of the historical record 
The review of literature indicates the presence of non-stationarity in the historical record of southeast 
Australia, with a number of references attributing key aspects of change to anthropogenic climate change. 
A pilot study using data from a few representative catchments are undertaken to assess the presence of 
significant trends in the attributes of climatic variables and the implications for stochastic time series 
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generation in the southern New South Wales region. As part of the assessment, we perform a trend 
analysis of the historical record of the pilot catchments and split-sample testing of the stochastic model, 
according to the recommendations of the independent review panel. 

The focus of this pilot study was to analyse key time series provided by DPIE that are used as inputs for 
hydrological modelling. As a result, interpretation of the pilot results needs to consider several caveats: 

• The homogeneity of the data has not been reviewed in this analysis. For this reason, the results 
presented below can be used to assess non-stationarity of the analysed data, but cannot be 
interpreted as a climate change attribution study. 

• The analysis assesses a relatively small number of stations relative to other peer reviewed 
assessments of trends in key weather variables in southeast Australia, and thus is not suitable to 
assess large-scale drivers of change (e.g. the effects of changes to circulation patterns) that present 
themselves when evaluating trends over larger geographical areas. 

For these reasons, results from this section should be considered in the context of the wider literature as 
summarised in Sections 3 and 4, rather than viewed in isolation.  

5.1   Data 

We use data from pilot sites located in the Upper Murray, Ovens and Snowy catchments, shown in Figure 4. 

 

Figure 6 Location of rainfall, evapotranspiration and temperature pilot sites 

Table 4 provides a summary of the data from the pilot sites which consists of precipitation, 
evapotranspiration (Mwet – the tag refers to Morton Wet formulation), and minimum/maximum daily 
temperature (Tmin, Tmax) time series. All data were sourced from the SILO database. The time-series span 
130-years from 1/1/1889 to 31/12/2018 and there were no missing values (owing to pre-determined 
infilling methods used to construct the data). 

Table 6 Summary of number of different observation timeseries by variable type 

Variable Type 

Pilot Basins 

Upper 
Murray 

Ovens Snowy 

SILO Rain 25 18 6 

SILO Mwet 5 18 7 
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SILO Tmin/Tmax 0 18 8 

 

As described above, the analysis of trends using raw station observations of Tmax and Tmin are not 
advisable because signals of changes in instrument, methods of data collection, and station location may 
exist in the data (Trewin, 2013). Such analysis are generally performed using homogenized temperature 
datasets. In the process of homogenization, raw temperature data from multiple sites are examined visually 
and statistically to create homogenised datasets that minimize discrepancies across time (Ashcroft & 
Karoly, 2012; Trewin, 2013)(Ashcroft et al. 2012; Trewin et al. 2012). The Australian Climate Observations 
Reference Network – Surface Air Temperature version 2 (ACORN SATv2) (Trewin et al., 2020) data is one 
such high quality dataset prepared and made available by the Bureau of Meteorology, Australia. This data 
has been used in literature to study the changes in temperature in Australia (Allen et al., 2019; van 
Wijngaarden & Mouraviev, 2016), and thus analyses of data provided by DPIE for the pilot sites are 
supplemented by an analysis of ACORN SATv2 data at key locations in the study area.  

The temperature stations from the pilot sites are located in the Ovens and Snowy catchments. Three 
ACORN SATv2 stations are located in the vicinity of these sites as shown in Figure 5.  

 

Figure 7 Location of pilot temperature sites and three ACORN SAT v2 stations in the vicinity 

Homogenized data at pilot site 82039 (Rutherglen Research) is available from the ACORN SAT v2 dataset, so 
that the differences between the data using the two methods can be compared. Figure 6 shows the 
differences in long-term trends calculated from the raw station data and the homogenized ACORN SATv2 
data at the same site using data for years 1913 to 2018 (101 years). There are major differences in the 
trends estimated from the two data sources. Such differences also exist in the short term trends estimated 
from the two data sources at this site (Appendix A). These differences indicate that the site level 
temperature observations from the pilot sites are unsuitable for the analysis of trends. While there is some 
debate on the homogenization of temperature data (Marohasy & Abbot, 2016), the use of homogenized 
data for assessment of trends is the existing globally accepted standard of analysis (Hewaarachchi et al., 
2017; Squintu et al., 2019; Vincent et al., 2020). Therefore, we perform trend analysis using the 
homogenized data from the three ACORN SATv2 stations located close to the pilot region (shown in Figure 
5) as part of this study. The length of homogenised data records at these sites are listed in Table 5.  
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Figure 8 Annual mean Tmax and Tmin at site 82039 (Rutherglen Research) from raw station data and homogenized ACORN SATv2 
data with linear trend lines. Blue trend lines indicate the presence of significant trends (at 5% level) using Mann-Kendall trend test. 
The data from 1960 to 1964 is missing at this site in the ACORN-SATv2 data. 

Table 7 ACORN SATv2 stations used for analysis 

Variable Type Station Number Period of Record 

Tmax, Tmin 

82039 08/11/1912 to 31/05/2019 

72150 01/01/1910 to 31/05/2019 

72161 01/01/1962 to 31/05/2019 

 

5.2   Methodology 

5.2.1   Trend detection 

The statistical significance of temporal trends in various attributes of the time series are assessed using 
non-parametric Mann Kendall test at two sided 5% significance level. The Mann Kendall test is a well-
established technique employed in studies for assessment of hydro-climatic time series (Lavender & Abbs, 
2013; Theobald et al., 2016; Ukkola et al., 2019). The magnitude of significant trends is quantified using 
least square regression, similar to the analysis performed by Theobald et al. (2016).  

While this approach can assess whether individual sites exhibit statistically significant trends, in multi-site 
analyses there is often a non-negligible probability of detecting one or more individual sites with significant 
trends even under the null hypothesis of no trends (for example at the 5% significance level one would 
expect an average of  five out of every 100 sites to experience statistically significant trends under the null 
hypothesis that there is no trend). As such, a ‘field significance’ test is used to determine whether the 
number of stations experiencing statistically significant trends are more than would expected under the 
null hypothesis. The field significance of the trends are assessed in this study using a bootstrap resampling 
procedure (e.g. Do et al. (2017)). The bootstrap procedure uses resampled data to obtain an estimate of 
the 95th percentile value of the percentage of significant sites that may occur due to chance. If the 
percentage of sites exhibiting significant trends in the historical record exceeds this estimate, then the 
trends are considered field significant. The methodology used for the analysis of trends consists of the 
following steps: 

The significance of site level trends are estimated using the Mann Kendall test. The proportion of sites that 
exhibit significant positive and negative trends in the historical record are calculated. 
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The entire dataset is randomly resampled in time while preserving the spatial structure. The new 
resampled data therefore contains a new sequence of years (eg: {1967, 1954, 2003, 1895, 1920…}). The site 
level significant trends in the resampled dataset are estimated using Mann Kendall test and the proportion 
of sites that exhibit positive and negative trends are calculated as done in step A. 

A bootstrapping procedure is used to repeat step B 1000 times. The samples are used to create a 
distribution of percentage of significant sites that may occur in the region due to chance. If the proportion 
of significant sites in the historical data (step A) is higher than the 95th percentile value of the proportion of 
significant sites that may occur due to chance, the historical trend is considered to be field significant. 

The attributes of rainfall, evaporation and temperature used for the trend analyses are listed in Table 6. 
These attributes are selected to comprise ‘hydrologically relevant’ features of the respective variables, 
which may have a bearing on hydrological response of the respective catchments. The trend analysis is 
performed using the entire dataset of 130 years (1889 to 2018) as well as a recent subset of the dataset, to 
enable comparison with existing literature. 

Table 8. Attributes of hydro-climatic variables and the time periods used for trend analyses 

Variable Attribute Definition Analysis 
Period 

Rainfall Total Total annual and seasonal (DJF, MAM, JJA & SON) 
rainfall (mm) 

1889 to 
2018 

1950 to 
2018 

Wet Day Rainfall Mean annual and seasonal wet day (P >= 1 mm) 
rainfall (mm/day) 

Number of Wet 
Days 

Annual and seasonal number of wet days (P >= 1mm) 
(days) 

Heavy Day Rainfall Annual and seasonal heavy day (P >= 10 mm) rainfall 
(mm/day) 

Number of Heavy 
Rainfall Days 

Mean annual and seasonal heavy day (P >= 10 mm) 
rainfall (mm/day) 

Mean Dry Spell 
Duration 

Annual mean number of consecutive days with 
rainfall less than 1 mm (days) 

Maximum Dry Spell 
Duration 

Annual maximum number of consecutive days with 
rainfall less than 1 mm (days) 

Extreme Intensity Annual mean rainfall during days with rainfall greater 
than the 95th percentile (mm/day) 

Extreme Frequency Annual mean number of days with rainfall greater 
than the 95th percentile (days) 

Evapotranspiration Total 
Evapotranspiration 

 

Total annual and seasonal (DJF, MAM, JJA & SON) 
evapotranspiration (mm) 

1889 to 
2018 

1975 to 
2018 

Temperature Mean Temperature Annual and seasonal (DJF, MAM, JJA & SON) mean 
daily minimum temperature  

Annual and seasonal (DJF, MAM, JJA & SON) mean 
daily maximum temperature 

 

1913 to 
2018 

1960 to 
2018 

 

5.2.2   Split sample stochastic simulations 

We assess the potential implications of non-stationarity on the results of stochastic analyses using split 
sample tests. This is achieved using a split sample methodology, in which the stochastic generation model is 
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calibrated to one part of the time series (usually the earlier part of the record) and then validated on the 
other part of the record. This split-sample approach provides an analogy to possible issues that could arise 
by calibrating a stochastic model to the full historical record and assuming it is representative of current or 
future conditions. We perform split sample stochastic simulations using the precipitation and 
evapotranspiration (Mwet) data from the pilot sites to assess the ability of a stochastic model calibrated on 
the earlier part of the record to capture statistics corresponding to the later part of the record. The split 
sample tests are designed based on the recommendations of the independent review panel, and consists of 
“1990 Reference” and “Drought Reference” experiments. These are defined as follows: 

• 1990 Reference: The experiment uses data up to year 1990 to calibrate the stochastic model and 
data after year 1990 to validate stochastic simulations. 

• Drought Reference: The experiment includes data up to the end of the Millennium drought (year 
2009) to calibrate the model, and the remaining period data to validation the simulations. 

We perform the calibration-validation tests using the full record (1889 to 2018, 130 years) as well as a 
shorter recent period of data (1950 to 2018, 69 years) to assess the performance of the stochastic model 
while calibrated using different record lengths. Note that the year 1950 used here is selected arbitrarily to 
consider the potential of a using a shorter baseline (eg: corresponding to the NARCliM 1.5 baseline starting 
in 1950). In total the experiment suite consists of the four experiments shown in Figure 7.  

 

Figure 9 Split-sample experiments 

The stochastic model used for the experiments uses is based on the latent-variable model formulation 
documented in Bennett et al. (2018). The model implemented for this pilot study is not conditioned on the 
IPO and it is a single site version of the spatial field rainfall model used for stochastic time series generation 
in the northern New South Wales basins (Leonard & Westra, 2020). The model is calibrated site-wise using 
observations from the calibration time period and used to generate stochastic time series. Time series are 
generated for 100 replicates of data length corresponding to the validation time period.  

The simulated data is compared to observations during both the calibration and validation time periods for 
assessment of the split sample experiments. The comparison is based on the attributes of hydro climatic 
time series that show major trends in the historical record identified using non-parametric trend testing at 
the pilot sites. The mean values of the attributes from the simulated data are compared to the mean values 
of observations from the calibration and validation periods at site level. The results are presented using 
histograms of the differences between the observations and simulations across all the pilot sites. 

 

 

 

5.3   Results of non-parametric trend testing  
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5.3.1   Trends in rainfall attributes 

Table 7 summarizes the number of sites that exhibit significant trends in rainfall attributes during the 
different two time periods of analysis. The trends in the attributes of rainfall that is significant in both long 
term (1889 to 2018) and short term (1950 to 2018) analyses are: 

• Decreasing trend in cool season totals 

• Decreasing trend in the number of wet days annually and during the cooler seasons of the year 

• Increasing trend in annual extreme rainfall intensity 

 

Table 9 Number of sites that exhibit significant trends (pos = significant positive trend, neg = significant negative trend, none = no 
significant trends) in annual and seasonal attributes of rainfall. The value in brackets indicate the number of sites as a percentage of 
the total number of sites (49 sites). Shading indicates trends that are field significant (at 5% level). 

  Total Rainfall (mm) 

  1889 to 2018 1950 to 2018 

    
   

    
   

  

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 5 (10%) 11 (22%) 2 (4%) 2 (4%) 3 (6%) 1 (2%) 1 (2%) 0 (0%) 1 (2%) 0 (0%) 

neg 8 (16%) 0 (0%) 6 (12%) 15 (31%) 1 (2%) 13 (27%) 0 (0%) 13 (27%) 8 (16%) 24 (49%) 

none 36 (73%) 38 (78%) 41 (84%) 32 (65%) 45 (92%) 35 (71%) 48 (98%) 36 (73%) 40 (82%) 25 (51%) 

  Mean Wet Day (P >= 1 mm) Rainfall (mm/day) 

  1889 to 2018 1950 to 2018 

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 21 (43%) 19 (39%) 5 (10%) 8 (16%) 22 (45%) 5 (10%) 6 (12%) 1 (2%) 2 (4%) 3 (6%) 

neg 7 (14%) 0 (0%) 7 (14%) 10 (20%) 2 (4%) 7 (14%) 0 (0%) 4 (8%) 8 (16%) 4 (8%) 

none 21 (43%) 30 (61%) 37 (76%) 31 (63%) 25 (51%) 37 (76%) 43 (88%) 44 (90%) 39 (80%) 42 (86%) 

  Number of Wet (P >= 1 mm) Days 

  1889 to 2018 1950 to 2018 

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 7 (14%) 10 (20%) 1 (2%) 3 (6%) 3 (6%) 0 (0%) 6 (12%) 0 (0%) 1 (2%) 0 (0%) 

neg 19 (39%) 3 (6%) 16 (33%) 19 (39%) 11 (22%) 24 (49%) 0 (0%) 26 (53%) 10 (20%) 29 (59%) 

none 23 (47%) 36 (73%) 32 (65%) 27 (55%) 35 (71%) 25 (51%) 43 (88%) 23 (47%) 38 (78%) 20 (41%) 

  Mean Heavy Day (P >= 10 mm) Rainfall (mm/day) 

  1889 to 2018 1950 to 2018 

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 17 (35%) 9 (18%) 2 (4%) 7 (14%) 27 (55%) 7 (14%) 4 (8%) 2 (4%) 2 (4%) 5 (10%) 

neg 2 (4%) 0 (0%) 0 (0%) 3 (6%) 0 (0%) 1 (2%) 0 (0%) 1 (2%) 1 (2%) 1 (2%) 

none 30 (61%) 40 (82%) 47 (96%) 39 (80%) 22 (45%) 41 (84%) 45 (92%) 46 (94%) 46 (94%) 43 (88%) 

  Number of Heavy Rainfall (P >= 10 mm) Days 

  1889 to 2018 1950 to 2018 

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 4 (8%) 15 (31%) 1 (2%) 2 (4%) 6 (12%) 0 (0%) 1 (2%) 0 (0%) 1 (2%) 0 (0%) 

neg 6 (12%) 0 (0%) 5 (10%) 11 (22%) 1 (2%) 15 (31%) 0 (0%) 7 (14%) 6 (12%) 20 (41%) 
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none 39 (80%) 34 (69%) 43 (88%) 36 (73%) 42 (86%) 34 (69%) 48 (98%) 42 (86%) 42 (86%) 29 (59%) 

  Mean Extreme (P > 95th percentile) Rainfall (mm/day) 

  1889 to 2018 1950 to 2018 

  ANN 
    

ANN 
   

  

pos 15 (31%) 
    

9 (18%) 
   

  

neg 1 (2%) 
    

1 (2%) 
   

  

none 33 (67%)         39 (80%)         

  Frequency of Extreme (P > 95th percentile) Rainfall Days 

  1889 to 2018 1950 to 2018 

  ANN 
    

ANN 
   

  

pos 13 (27%) 
    

3 (6%) 
   

  

neg 3 (6%) 
    

2 (4%) 
   

  

none 33 (67%)         44 (90%)         

  Maximum Dry (P < 1 mm) Spell Duration (days) 

  1889 to 2018 1950 to 2018 

  ANN 
    

ANN 
   

  

pos 0 (0%) 
    

13 (27%) 
   

  

neg 31 (63%) 
    

1 (2%) 
   

  

none 18 (37%)         35 (71%)         

  Average Dry (P < 1 mm) Spell Duration (days) 

  1889 to 2018 1950 to 2018 

  ANN 
    

ANN 
   

  

pos 6 (12%) 
    

0 (0%) 
   

  

neg 13 (27%) 
    

2 (4%) 
   

  

none 30 (61%)         47 (96%)         

 

Based on these results, the significant trends in the various rainfall attributes are summarised as follows: 

• Annual and Seasonal Totals: The long term (1889 to 2018) analysis shows negative trends in the 
JJA total rainfall and an increase in the DJF total. In the short term (1950 to 2018) analysis, the 
decreasing trends are significant at a larger number of stations, and the declines occur in MAM, JJA 
and SON seasons. The highest number of stations show statistically significant declines in SON 
(49%). 

• Mean Wet Day Rainfall: In the long term analysis, positive trends in the mean wet day rainfall are 
field significant at the annual scale. The positive trends occur in DJF and SON; negative trends occur 
in the cool season (MAM & JJA). In the short term analysis, only the negative trends in JJA are 
significant. 

• Number of Wet Days: In both the short term and long term analyses, negative trends are 
significant at the annual scale. In the long term, positive trends occur in DJF; negative trends during 
the MAM, JJA, and SON. In the short term analysis, only the negative trends during MAM, JJA and 
SON are significant. The negative trends during MAM and SON occur at more number of stations. 

• Mean Heavy Day Rainfall days and the Number of Heavy Rainfall Days: The trends in heavy 
rainfall intensity and frequency are vary between the analyses performed at long and short time 
scales. In the long term analysis, the prominent signal is an increase in mean heavy day rainfall 
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during all seasons except MAM. In the short term analysis, the prominent signal is a decrease in the 
number of heavy rainfall events in all seasons except DJF. 

• Intensity and Frequency of Extreme Rainfall Days: Both long term and short term analysis show an 
increase in the intensity of extreme rainfall days. The increase in frequency of extreme days is only 
significant in the long term analysis. 

• Dry Spell Durations: Long term analysis shows declining trends in the mean dry spell duration and 
maximum dry spell duration. The short term analysis shows an increasing trend in maximum dry 
spell duration. 

It is to be noted that we refrain from comparing the trends at the pilot sites with literature that examined 
trends in precipitation characteristics using gridded datasets primarily for the purpose of assessing the 
fidelity of global climate models in capturing these trends (eg: Alexander & Arblaster, 2009, 2017). The 
spatial scale of these studies are very different from the station level analyses of trends at the pilot sites; 
hence comparison proves difficult, and potentially misleading. However, in general, the declining trends in 
cool season rainfall appears to be sufficiently widespread in spatial scale to be apparent in literature 
documenting analysis at both larger and finer spatial scales (Nicholls, 2010; Theobald et al., 2016). 

The trends in rainfall attributes are compared to the reported trends in literature around the same region 
as summarised in Section 3 in Table 8. The decreasing trend in cool season precipitation in the pilot sites is 
consistent with this reported decline in this region. The decreasing trends in the frequency of wet days 
during the cool season are also broadly consistent with the trends documented literature. The increasing 
intensity in the annual intensity of extreme precipitation we note in the pilot sites do not appear to be as 
widespread spatially. The increasing trend in extreme intensity is consistent with literature focussed on 
near catchments (Theobald et al. 2016), but inconsistent with literature documenting larger spatial scale 
analyses (Gallant et al. 2007). 
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Table 10 Trends in rainfall attributes in the pilot sites and the changes reported in literature 

Attribute Study/Publication Period Ann D J F M A M J J A S O N Comment 

Total rainfall 

Pilot study long 1889-2018 - ↑ ↑ ↑ - - - ↓ ↓ ↓ - - - T&E (2009): Used gridded data; 
the comparison is based on 
approximately locating the pilot 
region from their figures.  

 

Gallant (2007): Used a larger 
southeast Australia region for 
their analysis. 

Gallant et al. (2007) 1910-2005 - - - - ↓ ↓ ↓ - - - - - - 

Pilot study short 1950-2018 ↓ - - - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Taschetto and England (2009) 1970-2005 ↓ - - - ↓ ↓ ↓ - - - - - - 

Risbey et al. (2013) 1956-2009 n/a n/a n/a n/a n/a ↓ ↓ ↓ ↓ ↓ ↓ ↓ n/a 

Gallant et al. (2007) 1950-2005 - - - - ↓ ↓ ↓ - - - - - - 

Mean wet day 
rainfall 

Pilot study long 1889-2018 ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑/↓ ↑/↓ ↑/↓ ↑ ↑ ↑ 

- 
Gallant et al. (2007) 1910-2005 - - - - - - - - - - - - - 

Pilot study short 1950-2010 - - - - - - - ↓ ↓ ↓ - - - 

Gallant et al. (2007) 1950-2005 - - - - ↓ ↓ ↓ - - - - - - 

Number wet 
days 

Pilot study long 1889-2018 ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ T&E (2009): Analyzed moderate 
rainfall events as events within 
one standard deviation of the 
mean.  

 

Theobald et al. (2016): Analyzed 
changes in the mean rainfall in the 
Snowy region. 

Gallant et al. (2007) 1910-2005 - - - - - - - - - - - - - 

Pilot study short 1950-2018 ↓ - - - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Gallant et al. (2007) 1950-2005 - - - - ↓ ↓ ↓ - - - - - - 

Taschetto and England (2009) 1970-2005 ↓ - - - ↓ ↓ ↓ - - - - - - 

Theobald et al. (2016) 1958-2012 - - - - - ↓ ↓ ↓ ↓ ↓ ↓ ↓ - 

Heavy day 
rainfall 

Pilot study long 1889-2018 ↑ ↑ ↑ ↑ - - - ↑ ↑ ↑ ↑ ↑ ↑ 
 - 

Pilot study short 1950-2018 ↑ - - - - - - - - - - - - 

Number of 
heavy rainfall 
days 

Pilot study long 1889-2018 - ↑ ↑ ↑ - - - ↓ ↓ ↓ - - - 
T&E (2009): Analyzed the number 
of heavy (1 to 2 SD from mean) 
and very heavy (more than 2 SD 
from mean) rainfall events 

Pilot study short 1950-2018 ↓ - - - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Taschetto and England (2009) 1970-2005 - - - - ↓ ↓ ↓ - - - - - - 

Theobald et al. (2016) 1958-2012 - - - - - ↓ ↓ ↓ ↓ ↓ ↓ ↓ - 

Pilot study long 1889-2018 ↓ n/a - 
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Mean dry spell 
duration* Pilot study short 1950-2018 - 

Maximum dry 
spell duration* 

Pilot study long 1889-2018 ↓ 
n/a - 

Pilot study short 1950-2018 ↑ 

Extreme rainfall 
intensity 

Pilot study long 1889-2018 ↑ 
n/a 

Gallant (2007): defined extreme 
rainfall as the  95th percentile of 
rainfall 

Gallant et al. (2007) 1910-2005 - 

Pilot study short 1950-2018 ↑ 

n/a Theobald et al. (2016) 1958-2012 ↑ 

Gallant et al. (2007)  1950-2018 - 

Extreme rainfall 
frequency 

Pilot study long 1889-2018 ↑ 
n/a 

  Gallant et al. (2007) 1910-2005 - 

Pilot study short 1950-2018 - 

n/a 

  

Gallant et al. (2007) 1950-2005 - 

Theobald et al. (2016) 1958-2012 - 

 
   

- No significant Trends 
       

   
    Trends that are present at more than 25% of the sites 

   

    
n/a The analyses for attribute/season not available 

    
    * The colours are reversed since increase in the attribute indicates a drier climate 
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Having reviewed the statistical significance of trends, we now turn to an examination of the magnitude of 
trends for cases that are field significant in the pilot catchments and consistent with literature. The 
magnitude of trends are estimated site-wise using linear least squares regression at all 49 rainfall sites. The 
median absolute value of the trends and the median percentage of trends at the 49 sites are presented in 
Table 8. 

Table 8. Median magnitude of trends at 49 pilot sites (x marks trends that are not field significant). 
Absolute trends per decade are presented first, followed by percentage change per decade in parentheses. 

Attribute 

 

Time 
Period 

 

Median Trends 

ANN DJF MAM JJA SON 

Total Rainfall 

 in mm/decade (%/decade) 

1889 to 
2018 

x 3.4 (2%) x -2.4 (-1%) x 

1950 to 
2018 

-16.8 (-2.1%) x -10.7 (-5.5%) -3.7 (-1.5%) -8.1(-3.7%) 

Number of wet days 

 in days/decade (%/decade) 

1889 to 
2018 

-0.6 (-0.6%) 0.1 (0.7%) -0.2 (-0.9%) -0.3 (-1%) -0.2 (-0.9%) 

1950 to 
2018 

-1.9 (-1.8%) x -0.9 (-4.4%) -0.2 (-0.7%) -0.9 (-3.6%) 

Extreme rainfall Intensity 

in mm/day/decade 
(%/decade) 

1889 to 
2018 

0.2 (0.5%) 

n/a 
1950 to 
2018 

0.3 (0.7%) 

 

The rainfall totals and the number of wet days in MAM and SON exhibit the largest trends, especially in the 
short term analysis. The spatial pattern of the magnitude of the short term trends in the number of wet 
days and total seasonal rainfall during MAM, JJA and SON are shown in Figures 8 and 9.  The decreasing 
trends in the number of wet days are present at a number of sites across the study region during MAM and 
SON. The decreasing trends in seasonal totals are more widespread during SON. 
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Figure 10 Short term (1950 to 2018) seasonal trends in number of wet days (in days/decade) 
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Figure 11 . Short term (1950 to 2018) seasonal trends in total rainfall (in mm/decade) 

5.3.2   Trends in evapotranspiration 

We examine the trends in evapotranspiration (Mwet) at the pilot sites over the full period of record (1889 
to 2018) as well as a more recent short term period (1975 to 2018), consistent with the pan evaporation 
trends reported in literature. Table 9 shows the number of sites that exhibit significant trends in 
evapotranspiration during the two time periods of analysis. The long term (1889 to 2018) analysis shows an 
increasing trend in annual total Mwet. At seasonal scale, the increase occurs during MAM, JJA and SON. 
The trend in JJA is widespread with 97% of the sites exhibiting an increasing trend. In the short term (1975 
to 2018) analysis, the annual and seasonal trends are not field significant.  

Table 11 Number of sites that exhibit significant trends in annual and seasonal total evapotranspiration. The value in brackets 
indicate the number of sites as a percentage of the total number of sites (29 sites). Shading indicates trends that are field significant 
(at 5%). 

Sign 
of 
Trend Total Mwet (mm) 

  1889 to 2018 1975 to 2018 

  ANN DJF MAM JJA SON ANN DJF MAM JJA SON 

pos 8 (27%) 2 (7%) 8 (27%) 29 (97%) 9 (30%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (10%) 

neg 1 (3%) 3 (10%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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none 21 (70%) 25 (83%) 22 (73%) 1 (3%) 21 (70%) 30 (100%) 30 (100%) 30 (100%) 30 (100%) 27 (90%) 

We compare the evapotranspiration (Mwet) trends from the pilot sites with reported trends in pan 
evaporation in Table 10. It is to be noted that pan evaporation records are different from the Morton wet 
evapotranspiration data from the pilot sites; however we include this comparison here in the absence of 
trend studies in literature using estimated Morton wet evapotranspiration data. Literature reports 
decreasing trends in pan evaporation during the 1975 to 2002 period, possibly due to decreasing wind 
speeds or atmospheric demand (Roderick and Farquhar, 2004). The trends are reported to be reversed or 
insignificant in southeast Australia when recent observations up to year 2016/2018 are used for analyses 
(Ukkola et al. 2019; Stephens et al. 2018). The insignificant trends in the short term pilot analysis is 
consistent with the results of Ukkola et al. (2019). 

Table 12 Trends in evapotranspiration in the pilot sites and the changes reported in literature 

Attribute Study Period Ann Comment 

Total 
Evaporation 

Pilot study long 1889-2018 ↑ 

The literature is uses pan evaporation 
records which is different from the 
estimated Morton wet evaporation used 
in the pilot study 

Pilot study short 1975-2018 - 

Roderick and Farquhar (2004) 1975-2002 ↓ 

Stephens et al. (2018) 1975-2016 ↑/- 

Ukkola et al. (2019) 1975-2018 - 

5.3.3   Trends in temperature 

The trends in minimum and maximum temperatures from three ACORN SATv2 stations close to the pilot 
sites are presented here. The long term (1913 to 2018) trends are calculated using available data from two 
of the stations; the short term (1960 to 2018) trends are calculated using data from all three stations. Since 
the analysis uses only three sites we do not perform field significance test of the results, and instead report 
trends at individual sites. 

All the temperature sites show significant increasing trends. Tables 11 and 12 present the magnitude of 
significant trends in Tmax and Tmin at the site-level data and the magnitude of trends reported in literature 
in this region. The trends in the ACORN-SATv2 sites near the pilot region shows significant increasing trends 
in Tmax and Tmin, consistent with literature. The magnitudes of trends are also in general consistent. The 
short term (1960-2018) increasing trends in Tmax and Tmin are slightly higher at these stations compared 
to the regional trends reported by Ashcroft et al. (2012). 

Table 13 The magnitude of trends in Tmax at the ACORN-SATv2 sites and the trends reported in literature. All trends are in 
°C/decade 

Study/Publication Period 
Pilot 
Station ANN DJF MAM JJA SON 

Pilot study long 1913-2018 
82039 0.15 0.10 0.22 0.11 0.12 

72150 0.07 0.10 0.12 - - 

Ashcroft et al. (2012) 1860-2011   0.04 0.03 n/a 0.08 n/a 

Ukkola et al. (2019) * 1910-2018   0.11 0.15 0.12 0.09 0.10 

Jones (2012) 1910-2010   0.07 n/a n/a n/a n/a 

Pilot study short 1960-2018 
82039 0.35 0.31 0.31 0.26 0.45 

72150 0.29 0.30 0.25 0.17 0.45 
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72161 0.37 0.40 0.26 0.33 0.52 

Ashcroft et al. (2012) 1960-2011   0.22 0.21 n/a 0.22 n/a 

* Studied trends in mean temperatures as the average of Tmax and Tmin 

Table 14 The magnitude of trends in Tmin at the ACORN-SATv2 sites and the trends reported in literature. All trends are in 
°C/decade 

Study/Publication Period 
Pilot 
Station ANN DJF MAM JJA SON 

Pilot study long 1913-2018 
82039 0.18 0.29 0.14 0.12 0.17 

72150 0.25 0.26 0.29 0.19 0.20 

Ashcroft et al. (2012) 1860-2011   0.07 0.10 n/a 0.05 n/a 

Ukkola et al. (2019) * 1910-2018   0.11 0.15 0.12 0.09 0.10 

Jones et al. (2012) 1910-2010   0.11 n/a n/a n/a n/a 

Pilot study short 1960-2018 

82039 0.22 0.40 - - 0.19 

72150 0.32 0.42 0.24 0.25 0.36 

72161 0.21 0.30 0.13 0.10 0.32 

Ashcroft et al. (2012) 1960-2011   0.18 0.23 n/a 0.18 n/a 

* Studied trends in mean temperatures as the average of Tmax and Tmin 

5.4   Results of split-sample testing 

Four split sample simulations are performed using the historical data from the pilot sites to assess the 
ability of the stochastic model to capture the attributes of rainfall and evapotranspiration in recent 
observations, following the methodology outlined in section 5.2.2. The split sample tests consists of the 
1990 reference and drought reference experiments. The mean attributes of the simulated data are 
compared with the mean attributes of observations during the calibration and validation time periods in 
the subsections below.  

5.4.1   Rainfall 

The trend analysis showed significant trends in cool season rainfall totals, annual/cool season number of 
wet days, and annual extreme rainfall intensity at the pilot sites. Here we examine these attributes in the 
simulated data with respect to the mean values in observations during the calibration and validation 
periods. The results of the experiments for some key attributes of rainfall are examined in this section. The 
figures showing the split sample results for other attributes are included in Appendix A for brevity. 

Figure 10 shows histograms of the differences in the mean MAM rainfall totals during the calibration and 
validation time periods from the MAM seasonal rainfall totals in the simulated time series. The 1990-
reference split sample tests are shown in Figure 10a-b. When stochastic models are calibrated using 
observed data up to year 1989, the simulated data shows substantial differences (42 to 58 mm) when 
compared to the post-1990 validation period. When the millennium drought is included in the calibration 
period, the MAM rainfall during the validation period is closer to both the calibration period and the 
stochastically simulated data (Figure 10c-d). For example, the simulations exhibit biases of 42 mm (+24%) 
with respect to the validation period in one of the 1990-reference experiments; the biases reduce to 10 
mm (+4%) when the drought is included in the calibration period. The histograms of total rainfall during JJA 
and SON are available in Appendix A. In each of these experiments, the seasonal rainfall totals during the 
calibration period are close to the simulated data, as expected. If the seasonal rainfall totals during the 
validation time periods are different from that in the calibration time period, the mean values during the 
validation period are different from the simulated data as well. The mean monthly rainfall is used for the 
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calibration of the stochastic model, and the simulated time series closely replicate this statistic during the 
calibration period. 
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Figure 12 Histograms of the mean differences in total rainfall in MAM during the calibration and validation time periods from 
stochastic simulations (in mm) at 49 pilot sites (a) 1990-reference split sample test using a long calibration period, (b) 1990-split 
sample test using a short calibration period, (c) drought-reference split sample test using a long calibration period, and (d) drought-
reference split sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

 

The results of the split sample tests in the MAM seasonal rainfall totals are consistent with the significant 
decreasing trends detected from the analysis of trends at the pilot sites. The mean total rainfall during 
MAM, JJA and SON (Appendix A) are lower during the recent validation periods compared to the earlier 
calibration periods used for the simulations consistent with the negative trends detected in these seasons.  

While the inclusion of the drought in the calibration period reduces the biases in MAM total rainfall in the 
simulations, there are increases in biases in some other statistics. The histograms of the total rainfall during 
DJF is shown in Figure 11. The simulations underestimate the rainfall during DJF in the 1990-reference 
experiments (-32mm, -16%). After the inclusion of data up to the year 2009 in the calibration, the biases 
increase (-72 mm, -29%). This change is in general consistent with the long term positive trend in total DJF 
rainfall. But the large positive difference during the recent validation period (+69 to 71 mm) could be due 
to statistically insignificant changes in the most recent records. 
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Figure 13 Similar to Figure 10, but for total rainfall during DJF (in mm). 

Figure 12 shows the histograms of the differences in the number of wet days during MAM during the 
calibration and validation time periods from the stochastically generated data. When compared to the data 
during the calibration time period, the stochastic simulations underestimate the number of wet days in all 
four experiments. The number of wet days is not a statistic that is used in the calibration of the model, and 
the simulated time series show a slight bias in this statistic with respect to the calibration period data (1 to 
1.4 days per season).  
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Figure 14 Similar to Figure 10, but shows the histograms of the mean differences in the number of wet days in MAM during the 
calibration and validation time periods from stochastic simulations (in days) at 49 pilot sites. 

 

In the 1990 reference experiments, the mean number of wet days during the validation period are lower 
than that during the calibration period, consistent with the negative trends detected in this attribute (Table 
8). The mean number of wet days during the validation period is lower than that in the simulations by 2.4 
to 3 days per season. When the millennium drought is included in the calibration period, the number of 
wet days during the calibration and validation time periods are very similar. Hence in the drought reference 
split sample tests, the simulations underestimate the number of wet days with respect to both the 
calibration and validation time period statistics. 

The histograms of the differences in the number of wet days during the other seasons (JJA, SON and DJF) 
are available in Appendix A. Similar to the results during MAM, the mean number of wet days from the 
stochastic simulations are biased lower compared to the calibration period (by 0.8 to 2.7 days per season) 
for all seasons and both time periods of calibration. The differences of the mean statistics during the 
validation period vary. The mean number of wet days in JJA and SON are lower during the validation time 
periods compared to the calibration time periods, consistent with the trends detected in the pilot sites. In 
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contrast, the number of wet days in DJF during the validation period are higher especially during the 2010 
to 2018 validation period (+4.1 to +4.3 days per season). While the long term trend in the number of wet 
days in DJF are positive at the pilot sites, there are no significant short term trends during this season. So 
this positive signal in the number of wet days in DJF during the most recent validation period could 
potentially be due to statistically insignificant trends in the recent record. 

The histograms of annual extreme rainfall intensity are available in Appendix A. The annual mean extreme 
rainfall intensity during the calibration period is close to that in the simulated data. During the validation 
period, the rainfall intensity is higher compared to the simulations, consistent with the positive trends at 
the pilot sites.  

To summarize,  

• The millennium drought is a ‘high-leverage’ event:  the statistics of the simulated rainfall can vary 
significantly depending on whether the drought is included in the calibration period or validation 
period. 

• The inclusion of the millennium drought improves some statistics during the validation period, 
but leads to a deterioration in others: The simulations show biases with the respect to the 
validation period data, and the sign and magnitude of biases vary with season and time period. In 
the 1990-reference split sample test, both the validation period mean MAM rainfall and the MAM 
number of wet days are biased higher in the simulations. The statistics match better in the 
drought-reference tests once the millennium drought is included in the calibration period. 
However, other statistics like the total rainfall during DJF and annual extreme rainfall intensity 
show larger biases in the drought reference experiments.  

5.4.2   Evapotranspiration 

The mean annual total evapotranspiration from the stochastic simulations is compared with the mean 
annual evapotranspiration during the calibration and validation time periods in Figure 13. The simulations 
match the annual evapotranspiration values during the calibration time period in all the simulations. In the 
1990 reference split sample tests, the mean evapotranspiration during the validation period are higher 
than the simulated totals (and calibration period) by 18 to 20 mm. When the model is calibrated using data 
up to year 2009, the annual totals from the simulations are closer to the annual totals during the validation 
period (mean difference = 8 to 11 mm). The split sample tests using shorter and longer calibration periods 
do not show any major influences on the differences between the simulations and the validation period.  
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Figure 15 Histograms of the mean differences in total annual evapotranspiration during the calibration and validation time periods 
from stochastic simulations (in mm) at 30 pilot sites (a) 1990-reference split sample test using a long calibration period, (b) 1990-split 
sample test using a short calibration period, (c) drought-reference split sample test using a long calibration period, and (d) drought-
reference split sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 

 

6   Summary of key findings from assessment of non-
stationarity 
Based on an analysis of multiple lines of evidence, comprising a review of available literature and the 
assessment of pilot sites in Ovens, Upper Murray and Snowy catchments using both Mann Kendall and split 
sample tests, there is evidence of non-stationarity in the record for rainfall and temperature. The non-
stationarity in evapotranspiration is not as well established, likely in part due to the different processes 
driving the different ‘types’ of evapotranspiration (e.g. pan versus Morton’s). Specific findings varied 
depending on the specific dataset used (e.g. gridded versus point; whether the data has been homogenized 
or not; the spatial domain of the data; the temporal period of analysis) but broad conclusions are: 

• Temperature records are non-stationary: Literature documents temperature increases in this 
region, especially post 1960 (Jones, 2012; CSIRO and BOM, 2015). The ‘Climate Change in Australia’ 
initiative reports an increase of 0.8°C in the Murray basin cluster (which contains the pilot 
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catchments) over the 1910-2013 time period assuming a linear trend, with higher trends for 
temperature minima than for maxima; this is broadly consistent with a mean temperature increase 
over Australia by just over 1°C during the slightly longer period from 1910 to 2018. Climate 
projections indicate that increases of 0.6 to 1.3 degrees are expected in the Murray Basin cluster in 
the near-term (2020 to 2039) with respect to a baseline of 1986-2005. The homogenized 
temperature sites near the pilot region analysed here also show statistically significant increases. 
The increases amount to 0.8-1.5°C in maximum temperatures and 1.9-2.6°C in minimum 
temperatures during the period 1913-2018.  

• Cool-season and annual rainfall totals are non-stationary: Literature documents declines in cool 
season (April to October) rainfall by 10-20% in southeast Australia since the mid-1990s, 
predominantly in autumn and early winter. The trend assessment using data from the pilot sites 
are in agreement with literature and shows short-term decreases in autumn, winter, and spring 
rainfall totals. The short term (1950 to 2018) trends are strongest in autumn – the median decline 
in autumn rainfall at the pilot sites amount to 5.5%/decade for the period 1950 to 2018; the 
median declines in annual total rainfall at the pilot sites amount to 2.1%/decade for the period 
1950 to 2018. 

• There are trends in multiple attributes of rainfall: Literature reports decreasing trends in the 
number of wet days during the cool season; the signal also exists in the data from the pilot sites. In 
addition, the pilot sites show a short-term decline in spring (SON) rainfall. This result is not 
consistent with other large scale studies in this region, but is consistent with regional studies in 
nearby catchments. There is an increasing trend in annual extreme rainfall intensity at the pilot 
sites. There is less consensus in literature on extreme rainfall intensity; however, the trend in the 
pilot sites is consistent with reported trend in a nearby catchment. 

• Non-stationarity in the evapotranspiration is not as well established: Literature documents 
negative trends in pan evaporation over the period 1975-2002, whereas studies using more recent 
data report insignificant/increasing trends. There are long term increases in annual Morton wet 
evapotranspiration at the pilot sites; the short-term trends are not statistically significant. The pilot 
study results are not directly comparable with available literature based on pan evaporation data, 
and so some uncertainty remains regarding the non-stationarity of evapotranspiration data.  

• Multiple climate drivers influence the rainfall in southeast Australia: Literature documents that 
the declining cool season rainfall is associated with an expansion of the tropics, increasing intensity 
of the sub-tropical ridge over the continent and positive trends in the Southern Annular Mode 
(SAM). Literature indicates that these changes in large scale patterns during the cool season are at 
least partly attributable to climate change (CSIRO, 2012; Hope et al., 2017). Other climate drivers, 
notably El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), influence the inter-
annual variability regional rainfall, primarily affecting rainfall in winter and during the warm season 
(CSIRO and BOM, 2015; Hope et al., 2017). 

• The period used for calibration influences the statistics of the simulated stochastic data: The split 
sample tests show that the millennium drought is a ‘high-leverage’ event, in the sense that 
statistics of the simulated rainfall can vary significantly depending on whether the drought is 
included in the calibration period or validation period. When the drought is included in the 
calibration period, the match between the simulations and observed data post the drought is 
dependent upon the statistic and season under consideration. The inclusion of the drought in the 
calibration period brings the autumn rainfall and number of wet days in the simulated data close to 
recent (2010-2018) observations, but results in a larger deviations in simulated summer rainfall, 
number of wet days in summer, and extreme rainfall intensity. For example, when the drought is 
excluded from calibration, the simulations show mean biases in the MAM rainfall during the 
validation period of +42 mm (+24%). When the drought is included in calibration the bias reduces; 
the simulations show biases in total MAM rainfall during the validation period of -10 mm (-4%). But 
in the same tests, the bias in DJF rainfall increases from a mean of -32 mm (-16%) to -71 mm (-29%) 
with the inclusion of the drought in the calibration period. 
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Although the pilot analysis does not seek to attribute trends to a specific driver (whether it be natural 
climate variability, anthropogenic climate change or other potential drivers of change), several studies have 
attributed the temperature shifts/trends and cool season rainfall trends to anthropogenic influences 
(CSIRO, 2012; Jones, 2012; CSIRO and BOM, 2015, Hope et al., 2017). The SEACI synthesis report states that 
“the decline in rainfall across south-eastern Australia was at least partly attributable to climate change” 
(CSIRO, 2012). The ‘Climate Change in Australia’ report notes that the literature on rainfall attribution in 
southern Australia is based on “implied attribution” using inferred causality from the attribution of large-
scale drivers. The report states that more formal attribution to definitive causes are yet to be established 
due to a range of uncertainties, but at the same time noting that the “drying across southern Australia 
cannot be explained by natural variability alone” (CSIRO and BOM, 2015).  

Future regional projections indicate a warmer and drier climate with respect to a baseline of 1986-2005. In 
the Ovens Murray catchment, VCP19 projections (Clarke et al. 2019b) report annual rainfall decreases 
during the 2020 to 2039 period. The projected median change is -6% (range of -12% to -4%) under the 
medium emissions scenario, and -11% (range of -18% to -3%) under high emissions scenario with further 
declines anticipated in subsequent decades. Climate projections for Murray Basin cluster indicate increases 
in potential evapotranspiration in all seasons; VCP19 projects 8 to 10% increases in pan evaporation by 
2030s (2020-2039). The projected changes for the Murray Basin cluster is based on Morton’s wet potential 
evapotranspiration, whereas the pan evaporation projections from VCP19 is based on pan evaporation 
modelled directly by the climate model. 

7   Options for stochastic time series generation in the 
Southern Basin 
Due to reported trends in the historical record for the Southern Basin, which is at least partly attributable 
to anthropogenic influences, there is a need to consider the implications of non-stationarity on the 
methodology utilized for the stochastic risk assessment. The working definition of ‘non-stationarity’ used 
here is that the parameters of the stochastic model (and thus the statistics associated with the 
stochastically generated data) vary with time. This time-variation means that stochastic results need to be 
reported relative to a time period, with the following terminology used in this report: 

• Historical record. This is used synonymously with the instrumental record (although noting that 
paleo-records of the IPO are used to inform the stochastic sequences in previous studies). For the 
purposes of this report, the ‘historical record’ is usually interpreted to mean the period from 1890-
2018 as this is the period of in-filled data available from the SILO database. 

• Baseline period. The term ‘baseline’ is usually used in context with climate projections, which are 
usually reported relative to a climatological baseline. The specific baseline period will depend on 
the climate models used and various other factors, with the World Meteorological Organization 
suggesting defining climate baselines of at least 30 years in duration (WMO, 1989). Further studies 
document that a baseline of 40 years is required for hydrological investigations in southeast 
Australia to capture the significant year-to-year variability associated with key processes (Potter et 
al., 2016).  

• Current climate. This is interpreted here to mean the risk at the current time (e.g. the year 2020, 
which is the date this report is written) of for a window centered on the current time. 

• Future climate. This can refer to any future period for which projections are available, and is 
usually reported as a ‘static’ estimate using some window, typically of length 20-30 years. 
Consistent with WMO applications, hydrological applications usually benefit from longer windows 
to increase the signal-to-noise ratio; however noting that there may be significant changes over 
this time period (i.e. the projected data within a 30 year window may not be stationary). It is noted 
that near-term future climate projections have started encompassing the current climate; for 
example VCP19 uses a future window of 2020-2039 and thus encompasses the current year.  
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To help illustrate these terms, the temperature in Victoria is reported to have increased 0.5° over the 
historical record from 1910 to 1995, and the current (2018) temperature is about 0.6° warmer than the 
1986 to 2005 baseline (Clarke et al. 2019a). Future temperature projections suggest increases of between 
0.5° and 1.3° for the period 2020 to 2039, relative to this same baseline. 

The stochastic method that has been used for the northern basins is based on the historical record and 
simulated to be conditional to the Interdecadal Pacific Oscillations, with the implicit assumption that the 
climate is stationary over this period. These simulations are intended to capture variability in the baseline 
historical record, which was composed of (SILO infilled) climatic measurements from the period 1890 to 
2018 as well as IPO distribution dwell times informed by paleoclimatic records. DPIE developed additional 
methodology to amalgamate the variability from the stochastic replicates with climatic signals informed by 
RCMs. This method applies NARCliM based scaling factors to the stochastic model outputs.  

There are a number of trade-offs associated with modifying this methodology to incorporate climate non-
stationarity, balancing the complexity of the climate signal, the strength of various non-stationarity 
elements as compared to the underlying variability, and the variety of methods that may be available to 
explicitly accommodate known trends. Here we detail a range of options available to account for the 
presence of non-stationarity in stochastics time series generation. The options vary in complexity.  

1.   Use the entire ‘historical’ record to calibrate the stochastic model.  

This is the simplest option, forming a naïve default. The advantage of this option is that it makes full use of 
the available historical data (1889 to 2018), which improves the statistical precision of parameters used in 
the stochastic model. The disadvantage is that where there are significant long-term shifts the historical 
record (as opposed to ‘natural’ variability including interdecadal variations associated with the IPO), the 
generated sequences may not be representative of ‘current’ climate. Moreover, it is assessments of future 
risk based on climate model results are invariably derived with respect to a historical baseline, and the 
extent to which the full (1889 to 2018) historical record is reflective of any given climatological baseline 
used for climate projections is unclear and is likely to depend on the specific climate variable, as well as the 
statistics for those variables (given the different findings for including/excluding the millennium drought 
depending on whether one was looking at MAM seasonal total, MAM number of wet days, JJA seasonal  
total or extreme rainfall intensity).  

2.   Use a climatological baseline to calibrate the stochastic model.  

This option involves using a shorter climatological baseline for calibration of the model, which can then be 
scaled using climate model outputs to derive both ‘current’ and ‘future’ estimates of variability. The 
baseline could be chosen to be consistent with the NARCliM scaling factors that are used for future 
projections by DPIE. The benefit of this approach is that it maintains basic consistency with NARCliM by 
having an identical baseline. The NARCliM 1.0 baseline is 1990 to 2009, and the NARCliM 1.5 baseline is 
1950 to 2005. The method is thus suitable for NARCliM scaling based current and future climate 
applications. 

The tradeoff is that the initial years of data (say, 1890 to 1950/1990) are no longer utilised and there is a 
corresponding loss of precision in the parameters used as the basis of the stochastic model. The significant 
interannual and interdecadal variability in particular means that depending on whether one includes (say) 
the Millenium drought as part of the baseline will make a significant difference on the simulated results.  

It is noted that this baseline will neither reflect ‘current’ or ‘future’ climate, and thus climate model outputs 
will be required to adjust the stochastic sequences to reflect these time periods. This requires decisions on 
the climatological baselines to be used for analysis, and if the NARCliM outputs are to be used, then this 
will depend on the specific version of NARCliM. In particular, the NARCliM 1.0 baseline of 20 years and, for 
the reasons described above, is too short to capture the ‘historical’ climate. To address, as already 
discussed the World Meteorological Organization recommends a minimum baseline length of 30 years 
(WMO, 1989). Guidelines developed under the Victorian Climate Change Initiative (VicCI) recommends a 
baseline of at least 40 years, given the high inter-annual variability in rainfall and runoff in this region 
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(Potter et al., 2016). Another disadvantage of the method is that the use of simple scaling to represent 
future climate would not reflect changes in statistics like the number of wet days or extremes. 

Another challenge associated with this approach is that scaling of the ‘baseline’ climate using climate 
models may be present significant challenges. In particular, multiplying rainfall by seasonal ‘change factors’ 
will mean that the number of wet days will stay constant and the extremes will change in the same manner 
as seasonal rainfall totals, which is inconsistent with the findings of the non-stationarity analysis presented 
above. It may be that these other statistics of ‘second order’ importance compared to seasonal and annual 
totals depending on the hydrological application (e.g. long-term catchment yield assessments), although 
this would need to be tested. Alternatively, more complex scaling options such as quantile-based approach 
could be used to jointly change the seasonal totals, wet days and extremes in a manner that reflects the 
climate projections.  

There are several further variants that could be considered for option (2) that involves using a ‘hybrid-
baseline’, but they present additional challenges that are likely to over-complicate the methodology. We 
detail these variants as option 3 below. 

3.   Use a hybrid-baseline of the “historical” climate to calibrate the stochastic model. 

One option is to utilize a hybrid-baseline period. For example, some statistics may have negligible or no 
shift between a baseline and a longer historical period. Therefore, additional precision would be achieved 
by calibrating selected statistics to a longer record, while reserving only some key statistics (such as the 
mean value) to the baseline period. The challenge with this approach is that the term “baseline” is no 
longer informative, since it is not clear what period is being represented in the calibration.  

Another option is to scale the historical record up to the values observed in the baseline period. This is one 
of the approaches to address non-stationarity recommended by the expert review panel. The benefit of 
this approach is that it provides a mechanism for utilizing the entire record. A challenge with this approach 
is that it requires the scaling of the prior historical record to be representative. This procedure is unlikely to 
be straight forward, because: 

Multiple statistics are changing in different ways, so that scaling by seasonal or annual totals may not lead 
to appropriate adjustments of the other statistics. In particular, the pilot study identified negative trends in 
cool season totals, negative trends in number of wet days and positive trends in extreme intensity, which 
would require care in how the historical observations are mapped. 

Historical non-stationarity is likely to encompass a combination of ‘natural’ climate variability and 
anthropogenic climate change, so one would need to assess the magnitude of historical change specifically 
associated with anthropogenic climate change in order to scale the historical values appropriately. If this is 
not done, then aspects of the signal associated with natural variability may also inadvertently be removed 
(at least in part), which is unlikely to be desirable. 

 

4.   Use the ‘inverse’ method to generate a ‘current’ or ‘future’ climate.  

This approach could be used to target statistic values representative of a particular period, such as the 
‘current’ or ‘future’ climate. Unlike traditional stochastic generation methods in which the stochastic 
generator parameters are estimated to achieve the best performance over a calibration dataset, the 
‘inverse’ method defines a set of ‘target’ statistics (e.g. total annual rainfall, seasonal rainfall, number of 
wet days, intermittency, extremes, etc) and then calibrates the stochastic generator to those statistics. The 
advantage of this method is that it is able to target the most recent values corresponding to current 
climate, whereas other methods (as in option 2) would use a baseline of ‘historical’ climate spanning the 
selected years, and which may not reflect ‘current’ climate.  

The key challenge of this method is defining the target statistics reflecting current or future climate. This is 
not a trivial exercise, and may require a combination of examining historical climate trends together with 
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climate modelling evidence. Moreover, this approach has not yet been implemented in large-scale real-
world analyses, and thus would require a period of method testing prior to widespread implementation. 

5.   Use weather typing to capture specific mechanisms of generation of precipitation. 

This method involves stratifying the historical record by synoptic types (such as ECLs) to provide a scaling 
method that can explicitly account for mechanisms with strong expected change. The methodology would 
involve additional complication introduced by the multiple weather types. There is also a challenge that it 
may ‘double count’ the effects of scaling when deployed alongside methods that are needed to scale other 
components. For example, if ECLs were introduced as a scaling category with their own relationships to 
future climate, other scaling relationships (e.g. shift in seasonality, shift in extremes) would need to be 
developed for the specific case of non-ECL weather events. This method is likely to be highly prospective 
given the potential of ‘double counting’ the effects of synoptic meteorology if they are also explicitly 
included in climate model projections.   

The trade-offs involved in the five options detailed above are summarized in Table 12 below. It is noted 
that the discussion of method advantages and disadvantages are predicated on the assumption that the 
historical record is non-stationarity and that at least part of that non-stationarity is attributable to 
anthropogenic climate change.  

Table 15 Summary of options for stochastic time series generation in the Southern basin, with advantages/disadvantages described 
in the context of a non-stationarity climate signal 

Option Advantages Disadvantages Application 

1. Entire 
record 

Long record, historical 
enables increased 
precision of parameter 
estimation 

Neither reflective of current climate 
nor a climatological baseline 

Reflection of long 
term historical 
climate 

2. Historical 
baseline 

Matches NARCliM 
baseline and thus can 
be used as the basis for 
‘current’ and ‘future’ 
climate assessments 

Need to choose which NARCliM, 
noting that NARCliM 1.0 is too short 
relative to WMO & VicCI 
recommendations 

Not reflective of current climate and 
thus requires some level of 
subsequent processing 

Simple seasonal scaling would not 
reflect changes in wet days and 
other statistics, although there may 
be alternative (e.g. quantile-based) 
methods that could address this 
issue 

NARCliM-derived 
‘current’ and ‘future’ 
climate applications 

3. Hybrid 
historical 
baseline 

Uses full historical 
record 

Possible extra precision 
in some attributes 
compared to baseline 
only 

Advantage of extra data before 
baseline is unclear 

There are multiple complicating 
factors associated with 
implementation of this method, 
including complex variations with 
key attributes, and the need to 
separate the natural and 
anthropogenic components of any 

Adjustments would 
enable stochastic 
data to reflect 
‘current’ climate 
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historical trends prior to 
adjustments 

4. Inverse 
method 

Can be implemented to 
match current and 
future climate 

Allows changes in all key 
attributes 

Difficulties  

Method development and testing 
required 

Could be designed to 
reflect ‘current’ and 
‘future’ climate 

5. Weather 
typing 

Allows for specific 
mechanisms (ECLs) 

Additional complication introduced 
by multiple types 

Scaling is complicated by types, and 
there exists a significant possibility 
of ‘double counting’  

Specific allowance 
for future changes to 
weather types rather 
than simple scaling 

 

Another point raised by the independent review panel is the role of multiple climate drivers in the southern 
region. Evidence in literature indicates a strong trend in the SAM during the cool season, while the warm 
season is influenced by ENSO and IOD. Note that previous stochastic generation methodology based on 
climatic relationship to the IPO relied on partitioning the climate under the assumption of stationarity in 
the IPO. This is conceptually different from assuming a trend signal in the relevant climate drivers, since it 
does not require projection of the trend associated with the climate driver. Also, in locations where the 
partition between IPO positive and negative shows negligible difference, the partition collapses back to the 
underlying marginal model (i.e. the model does not become ‘worse’ by inclusion of the IPO in areas where 
the IPO is not important).  

Although there is the potential to develop a non-stationary stochastic model that directly conditions on 
trend properties (such as SAM), this is inadvisable. Apart for the many technical methodological challenges 
of developing the non-stationary model and conditioning it on an RCM, any application of RCM-derived 
scaling factors of meteorological variables (such as temperature, rainfall and evapotranspiration) would 
then need to exclude the role of that driver as part of the analysis to avoid double counting this effect 
(given that the intent of the stochastic conditioning is to have the influence of the relevant driver already 
included in the analysis). Therefore, this is not presented as a viable option.   

7.1   Recommendation for stochastic generation 

SECTION TO BE COMPLETED 
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9   Appendix A: Supplementary Material 
 

 

Figure A1 Annual mean short-term (post 1960) Tmax and Tmin at site 82039 (Rutherglen Research) from raw station data and 
homogenized ACORN SATv2 data with linear trend lines. Blue trend lines indicate the presence of significant trends (at 5% level) 
using Mann-Kendall trend test. The data from 1960 to 1964 is missing in the ACORN-SATv2 data. 
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Figure A2. Histograms of the mean differences in total rainfall in JJA during the calibration and validation time periods from 
stochastic simulations (in mm) at 49 pilot sites (a) 1990-reference split sample test using a long calibration period, (b) 1990-split 
sample test using a short calibration period, (c) drought-reference split sample test using a long calibration period, and (d) drought-
reference split sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 
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Figure A3. Similar to Figure A2, but for total rainfall during SON (in mm). 
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Figure A5. Histograms of the mean differences in number of wet days in JJA during the calibration and validation time periods from 
stochastic simulations (in days) at 49 pilot sites (a) 1990-reference split sample test using a long calibration period, (b) 1990-split 
sample test using a short calibration period, (c) drought-reference split sample test using a long calibration period, and (d) drought-
reference split sample test using a short calibration period. The dashed vertical lines mark the means of the respective histograms. 
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Figure A6. Similar to Figure A5, but for number of wet days during SON (in days). 
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Figure A7. Similar to Figure A5, but for number of wet days during DJF (in days). 
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Figure A8. Histograms of the mean differences in annual extreme rainfall intensity during the calibration and validation time periods 
from stochastic simulations (in mm/day) at 49 pilot sites (a) 1990-reference split sample test using a long calibration period, (b) 
1990-split sample test using a short calibration period, (c) drought-reference split sample test using a long calibration period, and (d) 
drought-reference split sample test using a short calibration period. The dashed vertical lines mark the means of the respective 
histograms. 
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Mr Jon Midwinter 

NSW Department of Planning, Industry & Environment 

 

 

 

28 August 2020 

 

Dear Jon Midwinter, 

 

Proposal – Provision of stochastic climatic data for the Southern Basin representing historical, 
current and future climate conditions 

Thank you for the opportunity to submit a quote to provide stochastic data for the Southern basin, which we 
understand includes the New South Wales/Victorian Murray, and Murrumbidgee basins. 

 

This document describes the proposed method for generation of the stochastic data considering the full 
historical record as well as several alternatives to account for climate change, reflecting Options 1-3 as 
described in the “Implications of Non-Stationarity for Stochastic Time Series Generation in the Southern 

Basins” report. The proposal has been broken into a set of distinct stages to provide flexibility and enable cost-
effective testing of alternative approaches as part of overall program design. 

The team that has been assembled to complete this work will comprise Dr Michael Leonard, Dr Anjana 
Devanand and myself, who each have extensive experience in stochastic hydrology, climate data analyses, and 
hydrological modelling. We believe that the proposed methodology represents the latest research in stochastic 
generation for hydrological modelling, and meets the requirements for simulating rainfall, evapotranspiration 
and temperature in the Southern basin catchments. 

 

 

 

Yours sincerely, 

 

 

 

Prof Seth Westra 

Phone: (08) 8313 1538 

Mobile: 0414 997 406 
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1   Background and Project Appreciation 

 

The Department of Planning, Infrastructure, Environment (DPIE) has undertaken a risk-based methodology to 
account for climate variability and change in developing the Regional Water Strategies (RWS). A core 
component of the methodology involves the use of stochastically generated long term sequences of climate 
data to characterize the historical climate, and application of scaling factors to the stochastic data to generate 
future climate projections. The stochastic modelling is based on historical (observed/reconstructed) records of 
daily rainfall, evapotranspiration and temperature to generate synthetic data for 10,000 years that reflect 
variability over the instrumental record. 

 

This document outlines a proposal for generation of 10,000 year time series of rainfall, evaporation and 
temperature data at multiple sites in the Southern basin utilising the methodology developed in previous work 
on the northern basins; namely Macquarie, Border rivers, Gwydir, Namoi, Far North Coast, North Coast, and the 
Western catchments [1,2,3]. An expert panel independent review of the DPIE climate risk methodology 
recommended careful consideration of the implications of climatic non-stationarity on stochastic time series 
generation in the Southern basin. Subsequently, a pilot assessment was undertaken to analyse data from pilot 
sites in the Southern basin, and collate available information from a review of literature and future projections 
for the region [4]. Multiple lines of evidence indicate that the historical rainfall record in the Southern basin is 
non-stationary, and the observed changes are at least partly attributable to climate warming [5,6]. The non-
stationarity in the historical record has potential implications on stochastic time series generation in the region, 
as outlined in the pilot study report [4]. The methodology for stochastic time series generation proposed in this 
document accounts for climate change in the historical record. 

 

The project is structured in three stages: 

Stage 1 – Southern basin (~450 time series) – stochastic simulations based on the full record (1890 to 2018) 
under the stationarity assumptions is to be completed as a first priority given DPIE’s timeline and operational 
needs. This adopts consistent methodology with earlier stochastic generation work and will preserve 
correlations with previously generated stochastic sequences. An optional task of modifying the tail distribution 
to incorporate potential ‘outlier’ events such as occurred in 2019 for the Border region is also included as part 
of this Stage. 

Stage 2 – Assessment of future changes from NARCliM 1.5 data including provision of confidence intervals for 
changes to a range of key climate attributes, and qualitative comparison with projected changes from other 
sources of information on climate change projections as articulated in [4]. This will include the development of 
an agreed set of scaling factors based on best-available understanding of likely change in the Southern Basin. 

 

Stage 3 – Accounting for climate change in the stochastic sequences - stochastic simulations based on historical 
baseline consistent with either NARCliM 1.5 or adjusted scaling factors from Stage 2 will be developed using 
two alternate approaches (options #2 and #3 in pilot report). The implications of alternative approaches on the 
statistics of the stochastic sequences for rainfall, evapotranspiration and temperature will be assessed, and an 
optional task of also assessing implications directly on runoff is included as part of this Stage. 

 

The generated timeseries will characterise key statistical properties of rainfall, evaporation and temperature as 
necessary for hydrological response and water planning. The assessment will include inter-annual and multi-
decadal rainfall variability including the assessment of extreme droughts. 
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The following section reviews the existing model based on the northern basin project, and outlines the 
methodology for stochastic generation to account for climate change in the Southern Basin. It is expected that 
the simulated historical data will share ‘joint’ characteristics despite being simulated in separate stages. The 
joint nature of the simulation means that similar climatic conditions co-occur across all catchments (e.g. drought 
conditions). The joint simulation can be achieved via an approach of conditioning across all regions and 
timescales to ensure that subsequent stages relate to data simulated in earlier stages. The methodology to 
account for climate change includes an assessment of the NARCliM 1.5 data, stochastic simulations 
corresponding to the NARCliM 1.5 historical baseline and application of seasonal or quantile based scaling 
factors to generate current and future stochastic simulations. 

 

2   Proposed Method and Outputs 

 

2.1   Stage 1: Stochastic Simulations using the full historical record 

2.1.1.   Stochastic model development and data generation for the Southern basin 

The generation of stochastic data for the southern basin will use the multi-site generator employed in the 
northern basin catchments. This method has already been implemented for the other regions in New South 
Wales [1,2] to generate 10,000 year timeseries for a combined total of 754 rainfall and 569 evapotranspiration 
sites in Macquarie, Border Rivers, Namoi, Gwydir, North Coast, Far North Coast, and Western Regions of New 
South Wales. 

The model uses a hierarchical structure to ensure consistency across the region at monthly to inter-annual 
timescales. The Macquarie region was simulated at the daily timescale with the only hierarchy being the 
climate state model for inter-annual variability. The hierarchical structure in the model developed for 
subsequent regions have separate models for the interannual (IPO climate model as per [1]), annual 
(autoregressive lag-1) and monthly (autoregressive lag-1) scales [3]. The model employs a scaling of the 
neighbourhood size using a Gaussian Markov Random Field while retaining the correlation structure of the 
entire region. The model has been developed to maintain consistency with the simulated timeseries from 
existing sites in the previously simulated regions. 

A multi-site generator based on the model applied for the northern basins will be developed for the Southern 
basin under stationary assumptions using the full historical record from 1890 to 2018. The simulated data will 
be evaluated in detail relative to historical rainfall and evaporation over the period from 1890 to 2018, using 
the established evaluation methodology followed for the northern basins. The multi-site and multi- variable 
simulation requires extensive evaluation because it is important to reproduce variability across a wide range of 
scales (daily, monthly, seasonal, annual, decadal), and a wide range of statistics (amounts, dry- occurrences, 
extremes, dry and wet spells, excursions above/below a threshold, correlations, etc). It is important to carefully 
evaluate the model tradeoffs across the multiple sites, variables, statistics and scales. Detailed reporting and 
systematic evaluation of sites has been demonstrated based on simulated data for the northern region [1] and 
will follow a similar style for this project. 

The method uses a systematic evaluation to classify each statistic as ‘Good’, ‘Fair’ or ‘Poor’ according to a 
defined set of tests at all sites including: 

- distribution of annual rainfall/evaporation totals (1, 2, 5, 10 years) 
- mean and standard deviation of monthly rainfall/evaporation totals 
- proportion wet days, and 
- extreme rainfalls. 
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Simulations were developed in the northern region for historical climate scenarios for partitions of the IPO 
estimated from the instrumental record and paleoclimate proxies. In the southern region, the differences of 
partitioning the observed record based on IPO are anticipated to be low or non-existent given the lower 
influence of this mode of variability in this region, but will be tested directly on the data and the partitioning will 
be implemented if required. If indicated by the analysis, the developed model may exclude a partitioning based 
on the IPO, and this is not anticipated to affect the daily correlations with other regions. 

 

2.1.2.   Option 1: Model development to better represent the lower tail of the annual total rainfall 

The recent (2017 –) drought in the Border rivers region has resulted in record low annual total rainfall at time 
scales of 18 months to 3 years across the region [7]. A preliminary investigation showed that inclusion of the year 
2019 annual rainfall in the calibration period for that region influenced the stochastic simulations of minimum 
rainfall. Moreover, the stochastic analysis without inclusion of 2019 was not able to simulate annual totals as 
low as 2019. 

To ensure that future stochastic sequences yield credible low annual total years, the lower tail of the annual 
rainfall probability distribution used for stochastic simulation may be modified to achieve higher probability of 
low rainfall years to align with recent observations. This model development would examine the use of 
alternate probability distributions with heavier tails to represent the annual totals, and implement an 
appropriate distribution to represent the low rainfall years more accurately in the existing hierarchical 
stochastic generator. 

The developed model will be applied for simulation in the southern basin. As part of this development, it is 
proposed that the existing stochastic data generated for the northern regions be post-processed such that the 
annual totals from the simulations exhibit higher probability in the lower tails, consistent with the updated 
probability distribution. 

2.1.3.   Outputs 

• The 10,000 year timeseries for all requested sites in suitable electronic format based on the full 
historical climate 

• Comprehensive evaluation of at-site statistics for each site, ranging from daily through to inter- annual 
timescale, including a wide range of statistics and multiple variables 

• Summary assessment of key statistics and regional statistics across all sites 

• Option 1 also includes 10,000 year timeseries for sites in the northern basin generated through post-
processing of the existing data to match the implemented alternative tail probability distribution 

 

2.2   Stage 2: Assessment of current and future climate conditions using NARCliM 1.5 

An assessment of NARCliM 1.5 data will be undertaken to derive scaling factors for future projections. Bias 
correction of the NARCliM data would not be necessary for this assessment since the focus is on obtaining 
‘change factors’ representing future changes relative to the NARCliM historical simulations, which are then 
applied to the stochastic sequences. However, significant biases if identified will be described as part of the 
reporting, as large discrepancies might indicate broader issues with the projections. This analysis would involve 
the assessment of future changes projected for the Southern basin for a range of hydrologically relevant 
attributes of rainfall, evaporation, and temperature including: 

 

- Annual and seasonal rainfall totals 
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- Annual and seasonal evaporation totals 
- Annual and seasonal mean temperatures 
- Standard deviation of annual and seasonal rainfall totals 
- Number of wet days and heavy rainfall days 
- Extreme rainfall intensity and frequency 

As part of this analysis, future changes for multiple future time slices using the NARCliM 1.5 data relative to the 
historical climate baseline in all the attributes for the southern basin will be documented, as well as the 
uncertainty ranges of the projections. The analysis may include 2 or 3 time windows (minimum 30 years long) 
potentially including a ‘current’ climate window (i.e. a window centred on 2020) and one or two future 
windows, with the specific windows to be decided based on discussion with DPIE. The spatial homogeneity of 
the projected changes over the Southern basin will be examined to assess whether spatially uniform scaling 
factors may be used to generate stochastic future projections. 

The projected changes from NARCliM 1.5 will be compared with future projections from other published lines 
of evidence [eg: 8], as has been documented in the pilot study report [4]. Depending on the consistency 
between the NARCliM 1.5 findings and the other lines of evidence, adjustments in the scaling factors may be 
indicated to reflect best available understanding of likely climatic changes. Overall, the work undertaken in 
Stage 2 would identify the scaling factors and their uncertainties for future changes in rainfall attributes in the 
southern basin. 

2.1. Outputs 

Report detailing (1) the fidelity of NARCliM results in simulating historical climate, (2) future scaling factors and 
(3) uncertainty from the NARCliM 1.5 for hydrologically relevant climate attributes, as well as comparison to 
other sources of projections based on the lines of evidence reviewed in the pilot study report [4]. 

 

2.3   Stage 3: Generation of stochastic future projections 

Stage 3 involves two key steps: (1) generation of stochastic timeseries corresponding to the NARCliM 1.5 
baseline using the model developed for the Southern region in Stage 1, and (2) application of current and future 
scaling factors based on the analyses in Stage 2 to the generated data. An optional step of testing the 
implications of scaling factors on runoff series in selected pilot sites is also included in the analysis. 

2.3.1.   Stochastic simulations corresponding to the NARCliM 1.5 baseline 

This step involves the generation of stochastic data consistent with the NARCliM 1.5 baseline (years 1950 to 
2005). The generation of stochastic data may follow two alternate approaches as outlined in the pilot study 
report [4] using: 

a) observed data corresponding to the NARCliM 1.5 baseline to calibrate the stochastic model (Option 2 
presented in the pilot study report [4]) 

b) observed hybrid baseline which involves de-trending the historical data prior to the NARCliM 1.5 
baseline, and use of the extended observed record to calibrate the stochastic model (Option 3 
presented in the pilot study report [4]) 

Both of these approaches will be employed to obtain two alternate sets of ‘baseline’ stochastic simulations 
corresponding to the NARCliM 1.5 baseline. The use of observed data corresponding to the NARCliM baseline 
for calibration of the stochastic model is straightforward. De-trending the observed data to 
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generate the extended observed data corresponding to the NARCliM 1.5 baseline is more intricate. It is 
proposed that the seasonal and annual totals of rainfall will be de-trended and adjusted to reflect the NARCliM 
baseline to create the extended record, applying a bootstrap resampling method to ensure variance of the data 
is preserved. The method will not involve de-trending other statistics like the number of wet days. The 
stochastic model developed for the Southern basin in Stage 1 would be calibrated to shorter/de-trended 
observed data to generate two alternate ‘baseline’ stochastic simulations corresponding to the NARCliM 1.5 
baseline. 

2.3.2.  Scale the ‘baseline’ stochastic sequences to generate future projections 

This step involves scaling the ‘baseline’ stochastic simulations using the scaling factors obtained from the 
analysis of NARCliM data and examination of other lines of evidence in Stage 2. The scaling approach would 
employ two alternative methods: seasonal scaling factors or quantile scaling. It is proposed that multiple 
approaches will be considered to scale the different attributes of rainfall and generate stochastic current and 
future projections that reflect the expected changes in attributes, noting that quantile scaling will enable 
adjustment of the full daily distribution including extremes as well as number of wet days. The scaling method 
would incorporate future changes in annual and seasonal totals and could include changes in wet days. 
However, the method would not account for future changes to wet/dry spell lengths other than what would 
occur through adjustment of wet day frequency. 

The uncertainty estimates from NARCliM 1.5 (or adjusted NARCliM 1.5) in Stage 2 will be used in the scaling 
approaches, to generate current and future stochastic simulations that incorporate a range of conditions. 

The scaling method would be applied to both alternatives of the ‘baseline’ stochastic data generated using the 
approaches outlines in section 2.3.1. 

2.3.3.   Option 2: Evaluation of alternative options on runoff data 

The implications of the alternate approaches of current and future stochastic simulations on the simulated 
runoff will be assessed through hydrological modelling of pilot catchments in the southern basin. The 
catchments will be selected based on discussion with DPIE, and it is assumed that model and parameters will be 
made available by DPIE. Hydrological simulations will be performed using alternate stochastic future projections 
generated as outlined in section 2.2.3. The results of this assessment will help understand the implications of 
alternative approaches directly on the runoff data. 

2.3.4.   Outputs 

• Comprehensive evaluation of at-site statistics for each site, ranging from daily through to inter- annual 
timescale, including a wide range of statistics and multiple variables 

• Summary assessment of key statistics and regional statistics across all sites 

• Alternate sets of 10,000 year timeseries for all requested sites in suitable electronic format generated 
by application of both scaling methods on both ‘baseline’ stochastic time series. Time series also will be 
provided for up to three time horizons (e.g. a current and two future horizons), so the total output 
consist of up to 12 alternate sets of 10,000 year timeseries. 

• Script to implement scaling method in a scripting language suitable for DPIE (e.g. R or Python) 

• Option 2: Report on the implications of alternate approaches on runoff 

• Recommendation on the most suitable baseline period and scaling method to use for implementation 
purposes based on the outcomes of testing (ideally including outcomes of Option 2) 
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2.4   Summary of Tasks 

The main tasks involved in the methodology are summarised below. The work will be implemented by Dr Anjana 
Devanand with significant input and discussion from Dr Michael Leonard and Prof. Seth Westra. 

 

Task Description 

1.1 Stochastic model development and data generation for the southern basin (Stage 1) 

1.2 Model development to better represent the lower tail of the annual total rainfall (Stage 1, Option 
1) 

2.1 Assessment of current and future climate conditions using NARCliM 1.5 (Stage 2) 

3.1 Stochastic simulations corresponding to the NARCliM 1.5 baseline (Stage 3) 

3.2 Scale the ‘baseline’ stochastic sequences to generate future projections (Stage 3) 

3.3 Evaluation of alternative options on runoff data (Stage 3, Option 2) 

 

2.5   Project Reporting 

Four project reports will be developed summarising details of the methodology, assumptions, results, 
discussion of the outputs and any observed limitations. 

 

Stage 1 Report on ‘historical’ stochastic time series generation corresponding to the full historical record 
in the southern basin 

Stage 2 Report on NARCliM 1.5 projected future changes in the southern basin and comparison with 

other lines of evidence 

Stage 3 Report on ‘baseline’ stochastic time series generation corresponding to the NARCliM 1.5 

baseline based on two approaches (post-1950 observed record, de-trended observed record) 

Stage 3, 

   Option 2 

Report on the implications of alternate approached of baseline data generation on runoff in the 

southern basin  

The reports on the stochastic time series generation will include appendices containing detailed visual 
summaries across each location will be provided to accompany the main report. The results section will include 
description of the following statistics: 

• Number and distribution of rain days 

• Rainfall depth 

• Intensity, frequency and duration of extreme events 

• Severity and duration of below average rainfall 

• Variability over multiple timescales from inter-annual to multi-decadal 

• Multi-site rainfall dependency 

• Multi-variate (rainfall verse evaporation) relationship 

• Evaporation totals 

• Mean temperatures 

• The report on the NARCliM 1.5 projected changes will include documentation of the changes in all 
attributes listed in section 2.2. 

The reports will be written by Dr Anjana Devanand and internally reviewed by all members of the project    team. 



 

 

2.6   Project Management 

Note: Section 2.6 has been redacted. 

 

3   Project Timeline and Price Estimate 

Note: Section 3 has been redacted 
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APPENDIX 3: PROPOSAL UON METHODOLOGY 

Proposal prepared by University of Newcastle 27th November 2020 to Provide 
stochastic climatic data for the Greater Sydney Region representing historical, current and 
future climate conditions for DPIE Water. 

Task 1: Inception meeting.  

The proposed method will be presented at a meeting of the Independent Expert Panel 

chaired by the Deputy Chief Science and Engineer on 4th December 2020. This meeting will 

also review similar work being undertaken by University of Adelaide on addressing non-

stationarity in the southern Murray Darling Basin.  

Comments and feedback from this meeting of the Independent Expert Panel will be 

implemented, and the proposed method revised if required, to ensure consistency and 

identify any potential synergies with the University of Adelaide approach and analysis.  

Task 2: Identify weather systems.  

• Key weather systems responsible for rainfall characteristics that are important for 

determining storage inflows over a range of time scales (e.g. short-term episodic dam 

filling events, multi-decadal dry periods etc.) will be identified.  

• This analysis will (i) provide context for identification of suitable palaeoclimate data sets 

(used in Task 3) and (ii) help understand the possible nature of future climate change 

(used in Task 6).  

• Key weather systems will be identified for the Greater Sydney region using Self-

Organising Map (SOM) Analysis. SOMs have been successfully used to analyse 

synoptic weather across multiple regions in Australia and internationally. The SOM 

algorithm is preferred over traditional discrete clustering methods (e.g. k-means) as it 

accounts for continuity and nonlinearity, providing a more realistic representation of the 

continuous movement between weather patterns rather than assigning to discrete 

clusters that may misrepresent extremes. This makes the SOM algorithm preferable 

when consideration of both extremes and average climatology is important.  

• Rainfall distributions associated with each of the key weather systems will be determined 

as well as the frequency of occurrence for each key weather system.  

• Relationships between the identified key weather systems and large-scale ocean-

atmospheric processes (e.g. El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole 

(IOD), Interdecadal Pacific Oscillation (IPO)) will also be investigated.  

Task 3: Collate data sets.  

• DPIE will identify and supply the historical rainfall/evaporation data sets that will be used 

in this project. It is envisaged that this will include up to 200 paired data sets of historical 

rainfall and potential evapotranspiration at a daily time step for 130 years of record.  

• Appropriate palaeoclimate data sets will also be obtained to provide insights into pre-

instrumental hydroclimatic variability. This will include the ~450 year IPO reconstruction 

used elsewhere in NSW Regional Water Strategies and the ~2,700 year data set of 

dry/non-dry periods embodied in the Wombeyan Caves stalagmite geochemistry.  

• Check all daily rainfall/evaporation data supplied by DPIE.  

• Use the rainfall/evaporation data supplied by DPIE to calculate the annual and daily 

statistics that need to be realistically simulated by the stochastic modelling. This 

includes:  



 

 

• Annual statistics:  

o Mean, maximum, minimum (rainfall and evaporation);  

o Standard deviation (rainfall and evaporation);  

o Lag-one auto-correlation (rainfall);  

o 2-year low rainfall sums;  

o 5-year low rainfall sums;  

o 10-year low rainfall sums;  

o Spatial cross-correlation between rainfall and evaporation sites;  

o Spatial cross-correlation between rainfall and evaporation sites.  

• Daily statistics:  

o Number and distribution of rain days;  

o Rainfall depth;  

o Intensity, frequency and duration of extreme events;  

o Severity and duration of below average rainfall;  

o Spatial cross-correlation between Tuross rainfall and evaporation sites;  

o Spatial cross-correlation between Tuross and Bega rainfall and 

evaporation sites.  

o Prepare inputs for the non-stationarity testing (Task 4) and the stochastic 

modelling for current (Task 5) and future (Task 6) conditions.  

Task 4: Test for non-stationarity.  

• The unprecedented low inflows over the three years preceding the February 2020 dam 

filling event suggest the regional climate in the Greater Sydney region may have already 

changed. Tests will be conducted on the data provided by DPIE (in Task 3) to determine 

if there is evidence for non-stationarity in the 130 year instrumental rainfall/evaporation 

records.  

• The approach employed for testing for non-stationarity will be as per what is 

recommended by the Independent Expert Panel to ensure consistency with the approach 

previously employed by University of Adelaide when addressing non-stationarity in the 

southern Murray Darling Basin.  

• The exact approach that will be used to test for non-stationarity will be confirmed at the 

Inception meeting on 4th December 2020 (Task 1).  

Task 5: Develop and implement stochastic models – stochastically generate daily 
rainfall and evaporation data for Sydney catchments and Greater Sydney region.  

• The daily hydroclimatic data will be generated for the required sites using a multi-site 

stochastic generation based on a lag one autoregressive (AR1) Matalas (1967) model. 

The multi-site Matalas model was originally developed for application at the annual time 

scale but this has been adapted in previous work (e.g. McMahon et al., 2008; Mortazavi-

Naeini et al., 2015) for application at the daily time scale. The modified multi-site Matalas 

model uses an AR1 model that preserves the lag-zero and lag-one cross correlations 

between seasons and locations for all variables (i.e. rainfall and evaporation).  

• The modified multi-site Matalas model will be calibrated (or trained) using the DPIE 

provided ~130 years of historical (i.e. instrumental) daily rainfall and evaporation.  

• The stochastically generated outputs will then be compared with the historical data to 

determine if the key statistics observed in the instrumental records (as calculated in Task 

3) are accurately reproduced in the stochastically modelled outputs and to gain some 

insights into the impacts of climate variability in the Greater Sydney region.  

• The outputs will be formatted according to DPIE requirements for inputs into the 

hydrological modelling that DPIE needs to conducted as part of the Greater Sydney 

Water Strategy.  



 

 

Task 6: Perturb data sets for climate change.  

The following approaches will be used to perturb data sets to account for the projected 

impacts of climate change:  

• As per the approach used for the NSW South Coast (Bega and Tuross) which involved 

altering the seasonal frequency of East Coast Lows (based on plausible projections from 

NARCliM1.0 and information obtained in recent literature) which in turn changes the 

distribution of daily rainfall/evaporation. These ‘climate change impacted’ 

rainfall/evaporation sequences are then used as input to the stochastic models developed 

in Task 5 to produce plausible scenarios for how rainfall/evaporation could change in the 

future which are then used to stress-test options for ensuring/improving water security in 

the Greater Sydney region. For this Greater Sydney region study, the NSW South Coast 

(Bega and Tuross) method will be updated by using insights from Task 2 and the newly 

(or soon to be) available NARCliM1.5 data sets to get improved information about how 

East Coast Lows (and other key weather systems) are projected to change.  

• Follow the approach proposed by University of Adelaide for the southern Murray Darling 

Basin. This approach is designed to make use of the newly (or soon to be) available 

NARCliM1.5 data sets, on the premise that it is the best available climate model 

information for NSW. The exact details of this approach are to be confirmed at the 

Inception meeting on 4th December 2020 (Task 1).  

Task 7: Implement quality assurance on outcomes.  

• Ensure the stochastically generated data for historical conditions (Task 5) satisfactorily 

reproduces the key statistics observed in the instrumental records (as calculated in Task 

3).  

• Work with DPIE modelling staff to ensure that the stochastically generated data 

produces expected hydrological outcomes.  

• Provide all of data from Task 5 and Task 6 to DPIE for hydrological and water resources 

modelling and work with DPIE to ensure satisfactory reproduction of key statistics (e.g. 

number of rain days, rain event frequency, means and standard deviations for multiyear 

periods).  

Task 8: Reporting.  

• Attend virtual meetings as required.  

• Prepare and provide a draft report which details the methodology, assumptions, results 

and a discussion on the limitations of the approaches taken to generate the data. 

Information in the results section will include plots, tables and discussion that:  

(a) Demonstrates that the performance of the stochastic model is satisfactory (i.e. the 

key statistics observed in the instrumental records (as calculated in Task 3) are 

accurately reproduced in the stochastically modelled outputs); and  

(b) Illustrates the range of rainfall and evaporation conditions that are possible under 

the plausible climate change scenarios investigated.  

• Obtain feedback on draft report from DPIE.  

• Finalise report submit it to DPIE.  

 



 

 

APPENDIX 4: ROLLING ORIGIN APPROACH TO MODEL 
EVALUATION 

Rolling Origin Approach to Model Evaluation – Testing the 
Temporal Stability of Model Parameter Estimates and Simulations 

Assessments of model performance are typically based on out-of-sample measures. For 
example, the available sample can be split into two parts. The model is then fitted to the 
training set and its skill evaluated using one or more error measures on independent test 
data. The overall aim is to minimize the combined bias and variance by sacrificing some bias 
in exchange for reducing sampling variance. If model performance is noticeably better during 
training, overfitting might be an issue (Shumeli 2010).  

Evaluating model performance based on a single split may provide a biased estimate of 
model performance due to the presence of outliers and changes in the mean level of the 
response variable (e.g. rainfall or streamflow). Application of more sophisticated 
conventional techniques (such as k-fold cross-validation) to time series can be problematic if 
there is an implicit temporal dependence in such data (which might include seasonality, low 
frequency variability and a chronic trend), and the series is nonstationary (due, for example, 
to temporal variations in the mean and variance). 

Rolling origin evaluation is a resampling method in which the origin of the test set is updated 
successively, and model simulations are produced from each origin (Tashman 2000; 
Petropoulos et al. 2017). There are different options of how this can be done. One approach 
is illustrated in the schematic diagram below. For convenience assume that the length of the 

series of interest 
, 1, 2, ,ty t N=

, is exactly divisible by a user-specified integer h. Let 

/ 2M N=  denote the number of observations in the training set for each iteration. During 
the first iteration, the model is calibrated to the first M observations. It is then used to 
produce an ensemble of simulations for which the mean is calculated for 

1, 2, ,t M M N= + + . The means are stored for later retrieval. During the second iteration 
the first h observations are discarded, and the training set is moved forward to maintain the 
training set size (M). The model parameter estimates are updated using this training set and 
a new ensemble of simulations produced. Means of the ensemble are obtained for 

1, 2, ,t M h M H N= + + + +  and stored. This process is repeated until the last observation 
is used for training. Each test set can be segmented into subseries of length h. Model 
performance can be evaluated by applying similarity/distance measures to the stored means 
and corresponding observations for each subseries.  

For a given iteration, the marked changes in model performance across the subdivided test 
series is an indicator of temporal instability. Across iterations and for a given subperiod of 
the test set, performance measure values can be compared to assess the sensitivity of 
model simulations to variations in the temporal origin of the training data.  

Finally, if the number of parameters is small, XY plots of the parameter estimates against 
iteration number may be informative. Otherwise and when appropriate, the spatial-temporal 
stability of model parameter estimates can be gauged by comparing parameter estimate 
maps for each iteration.  
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Figure 16:Schematic of rolling origin procedure for model evaluation.  

For a given iteration: the filled cyan box indicates observations included in the training set; the filled red box 
indicates the test set, with each numbered interior box containing approximately h observations; and the white 
box indicates observations that are temporarily excluded from the training or test set.  
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